
Improved Compressed String Dictionaries∗

Nieves R. Brisaboa
brisaboa@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Ana Cerdeira-Pena
acerdeira@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Guillermo de Bernardo
gdebernardo@udc.es

Universidade da Coruña,
Centro de investigación CITIC, Databases Lab.

A Coruña, Spain

Gonzalo Navarro
gnavarro@dcc.uchile.cl

IMFD, DCC, University of Chile
Santiago, Chile

ABSTRACT

We propose a new family of data structures to store and query

string dictionaries inmainmemory.We combine hierarchical Front-

codingwith ideas from longest-common-prefix computation in suf-

fix arrays. We focus on two application domains where string dic-

tionaries are extensively used:URL collections, used inWeb graphs,

and collection of URIs and literals used in RDF datasets.We test our

proposals in real-world dictionaries, showing that our data struc-

tures yield relevant space-time tradeoffs, achieving very good com-

pression and competitive query times.

CCS CONCEPTS

• Information systems→ Data compression; Dictionaries.

KEYWORDS

compression, data structures, string dictionaries

1 INTRODUCTION

String dictionaries, thatmap strings to unique identifiers, arewidely

used in applications thatmustworkwith large collections of strings.

For instance, in Web graphs or RDF datasets, a usual technique

is to associate consecutive integers to each node label, and then

build a representation of the graph structure that uses those inte-

ger identifiers (ids) instead of the original strings. Then, queries

are solved by translating query strings to ids, executing the query

on ids and mapping the results back to strings. The two basic oper-

ations needed are lookup(s) , that receives a string and returns the

string id, and access(i) that returns the string from the id.

In this workwe focus on the compact representation of URL dic-

tionaries, used in Web graphs, and URIs and literals dictionaries,

used in RDF datasets. We combine well-known techniques such as

Front-coding or Re-pair compression with adapted binary-search

algorithms to obtain a family of compressed string dictionaries

with good performance in those applications.

Several solutionshave been proposed for this problem.Martinez-

Prieto et al. [4] developed, among other proposals, a solution based

on a fixed partition of the strings and compression of each block

with Front-coding and other techniques; their solution provides a

∗This extended abstract summarizes work previously published in CIKM 2019 [1]
"Copyright ©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)."

wide space/time tradeoff varying the block size. Grossi and Otta-

viano proposed path-decomposed tries (PDT) [3], a compact trie

representation that achieves good compression and very consis-

tent query times.

2 OUR PROPOSAL

Our techniques follow the same ideas of differential compression

based on Front-coding proposed in previous work [4], but we de-

sign a new arrangement that aims at improving the space-time

tradeoff of previous solutions based on sampling and linear search.

Our representation starts from a collection of strings, that are

lexicographically sorted. We add two markers at the limits of the

collection, and initialize two arrays llcp and rlcp, that will be set

to 0 for those markers. Then, we select the middle pointm of our

array, set the value llcp[m] to the longest common prefix (lcp) be-

tween the string at the middle and the left limit, and rlcp[m] to

the lcp between the middle and the rightmost string. Then, we re-

cursively repeat the process in each half of the collection, until all

lcps have been computed. We remove from each string the prefix

corresponding to the maximum of its two associated lcps. Figure 1

displays the resulting elements for a sample collection of strings.

Our representation consists of the arrays llcp and rlcp, and the tails

of the strings after removing the prefixes.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

//&3

5/&3

�

�

� � � � � � � � � � �� �� �� �� �� �� ��

� F
D
OO�

F
D
P
S
�

F
H
LO�

F
H
LOLQ
J
�

F
H
Q
W�

F
H
Q
WV
�

F
OD
P
�

F
OD
P
S
�

F
OH
D
Q
�

F
OH
D
U�

F
OH
Y
H
U�

F
OLP
D
WH
�

F
OLQ
J
�

F
OR
WK
H
V
�

F
OR
Y
H
U�

a
�

Figure 1: Conceptual dictionary structure.

Using those structures, to look up a string, we could binary

search our collection and compare the query string with the string

tail at the midpoint at each step. We have instead devised an im-

proved binary search procedure that, keeping track of lcp values,

is able to save some string comparisons. To recover the string for

an id, we reverse the procedure used in lookups. We recover the

Brisaboa et al.

string from the end, starting at the given position and moving to

the left/right “parent” to keep decoding new characters, until we

reach a position with lcp 0 and hence the string decoding is com-

plete. The complete pseudocode for both algorithms can be found

in the full article.

We call our basic proposal IBiS, but we have proposed and tested

a number of implementation variants for the same conceptual rep-

resentation, varying the data structure and compression techniques

applied to llcp, rlcp and the string tails S : IBiS stores the arrays

as sequences of fixed-size integers, and the string tails are stored

in a single string Str . We add a bitmap B that marks the begin-

ning of each string tail in Str . IBiSRP applies Re-Pair compres-

sion to Str and encodes the resulting integer sequence as an ar-

ray. IBiSRP+DAC is similar to IBiSRP , but uses DACs [2] to store

llcp and rlcp. IBiSRP+DAC−VLS is also similar to IBiSRP but uses

another variant of DACs to store the array resulting from Re-Pair

compression. IBiSRP+DAC+DAC−VLS combines the two previous

approaches, using DACs to llcp, rlcp and the Re-Pair-compressed

strings.

We also tested other variants that provide interesting tradeoffs.

First, if we consider end-of-string markers in Str to locate the end

of each string we can speed up some comparisons, but we have to

store an extra byte per string; we can omit those to save significant

space, at the cost of slightly more complex searches. We also build

variants that use a single lcp array (llcp or rlcp) instead of two; in

those variants, we avoid storing one of the arrays, but our string

tails are longer, and search operations may not save as many string

comparisons, so a space-time tradeoff is obtained.

3 EXPERIMENTAL EVALUATION

We tested our proposal with Web graph and RDF datasets. We

summarize here the full results, that can be found on the full pa-

per. We compare our results with previous solutions [4] based on

Front-coding (RPFC and RPHTFC) and binary search (RPDAC and

HASHRPDAC), and with path-decomposed tries (PDT).

Our preliminary results suggest a number of trends among our

variants. For instance, among single-lcp implementations, those us-

ing only llcp (−L) are consistently the most efficient, so we will

show detailed results for those. Variantswith no end-of-stringmark-

ers (−nt) also obtain the best performance in general, since query

times are slightly affected but compression improves significantly,

so we will restrict our explanation to them.

Figure 2 shows the space/time tradeoffon theWeb graph dataset

UK. Results in other datasets follow similar trends: our techniques

achieve the best compression and are competitive in query times

with most alternatives. Techniques like PDT or RPDAC are faster,

but significantly larger in most cases; previous solutions based on

Front-coding provide a wide tradeoff, but our variants can pro-

vide similar tradeoffs and achieve better compression for similar

query times. Additionally, our variants provide different tradeoffs

for lookup and access that could be useful in specific applications.

4 CONCLUSIONS

Our new family of compressed data structures can efficiently com-

press string dictionaries and provide competitive query times. Our

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35

lo
ok

up
 ti

m
e

(µ
se

c.
/q

ue
ry

)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiSRP-nt

IBiSRP-L-nt

IBiSRP+DAC-nt

IBiSRP+DAC-L-nt

IBiSRP+DAC-VLS-nt

IBiSRP+DAC-VLS-L-nt

IBiSRP+DAC+DAC-VLS-nt

IBiSRP+DAC+DAC-VLS-L-nt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35

ac
ce

ss
 ti

m
e

(µ
se

c.
/q

ue
ry

)

space (% of original)

RPFC

RPHTFC

RPDAC

HASHRPDAC

PDT

IBiSRP-nt

IBiSRP-L-nt

IBiSRP+DAC-nt

IBiSRP+DAC-L-nt

IBiSRP+DAC-VLS-nt

IBiSRP+DAC-VLS-L-nt

IBiSRP+DAC+DAC-VLS-nt

IBiSRP+DAC+DAC-VLS-L-nt

Figure 2: Space and query times on Web graph UK

evaluation with Web graphs and RDF data suggests that our tech-

niques improve the compression obtained by state-of-the-art so-

lutions. Moreover, the variants tested provide several interesting

space/time tradeoffs for compression, lookup and access perfor-

mance. Our proposal is so far limited to a static scenario, and works

well in datasets with relatively long strings on average. We plan to

explore the possibilities to adapt our solutions to other types of

string dictionaries, as well as to the dynamic dictionary problem.

REFERENCES
[1] Nieves R. Brisaboa, Ana Cerdeira-Pena, Guillermo de Bernardo, and Gonzalo

Navarro. 2019. ImprovedCompressed String Dictionaries. In Proc. 28th ACM Inter-
national Conference on Information and Knowledge Management (Beijing, China)
(CIKM’19). 29–38. https://doi.org/10.1145/3357384.3357972

[2] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. 2013. DACs: Bringing
Direct Access to Variable-length Codes. Information Processing and Management
49, 1 (Jan. 2013), 392–404. https://doi.org/10.1016/j.ipm.2012.08.003

[3] Roberto Grossi and Giuseppe Ottaviano. 2015. Fast Compressed Tries Through
Path Decompositions. Journal of Experimental Algorithmics 19, Article 3.4 (Jan.
2015), 11 pages. https://doi.org/10.1145/2656332

[4] Miguel A. Martínez-Prieto, Nieves R. Brisaboa, Rodrigo Cánovas, Fran-
cisco Claude, and Gonzalo Navarro. 2016. Practical Compressed
String Dictionaries. Information Systems 56, C (Mar. 2016), 73–108.
https://doi.org/10.1016/j.is.2015.08.008

https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1016/j.ipm.2012.08.003
https://doi.org/10.1145/2656332
https://doi.org/10.1016/j.is.2015.08.008

	Abstract
	1 Introduction
	2 Our proposal
	3 Experimental evaluation
	4 Conclusions
	References

