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ABSTRACT

With e-commerce as the motivating example, we introduce a new

multi-armed bandit setting where arms are grouped inside “ordered”

categories. We conduct an analysis on real data to highlight that

those ordered categories actually exist in practice. Finally, we pro-

vide algorithms that fully leverage the structure of the model and

experimental results show the superiority of our proposed policies.
1

CCS CONCEPTS

• Computing methodologies→ Online learning settings; Se-

quential decision making; • Applied computing → Online

shopping; • Information systems→ Recommender systems.
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1 INTRODUCTION

In the multi-armed bandit problem, an agent faces several possible

decisions (or arms) and chooses sequentially one of them at each

time step. This generates a sequence of rewards and the objective is

tomaximize their cumulative sum. The performance of an algorithm

is evaluated through the “regret”, which is the difference between

the cumulative reward of an oracle (that knows the best arm) and

the one of the algorithm. There is a clear trade-off arising between

gathering information on uncertain arms and using the information

already available. The traditional bandit model must however be

adapted to specific applications to unleash its full power.

Consider for instance e-commerce. One of the core optimization

problem is to decide which products to recommend to a user, in

the objective of maximizing the click-through-rate. Arms of recom-

mender systems are the different products that can be displayed.

The number of products, even if finite, is prohibitively huge as the

regret typically scale linearly with the number of arms. So agnostic

bandit algorithms take too much time to complete their learning

phase. Thankfully, there is an inherent structure behind a typical

catalogue: products are gathered into well defined categories. As

customers are generally interested in a few of them, it seems benefi-

cial to gather information across products to speed up the learning

phase and, ultimately, to make more refined recommendations.

2 MODEL

As motivated in the introduction, the total number of arms can be

prohibitively large, but we assume that arms are grouped in a small

number𝑀 of categories and each category has the same number
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of arms 𝐾 .2 At time step 𝑡 ∈ [𝑇 ], the agent selects a category

𝐶𝑡 and an arm 𝐴𝑡 ∈ 𝐶𝑡 in this category. This generates a reward

𝑋
𝐶𝑡

𝐴𝑡
= 𝜇

𝐶𝑡

𝐴𝑡
+ 𝜂𝑡 where 𝜇𝑚𝑘 is the unknown expected reward of the

arm 𝑘 of category𝑚 and 𝜂𝑡 is some independent 1 sub-Gaussian

white noise. We assume the existence of an optimal category with

respect to a partial order defined below. Some categories might not

be pairwise comparable, but we assume that the optimal category is

comparable to, and dominates, all the others. As in any multi-armed

bandit problem, the overall objective of an agent is to maximize her

expected cumulative reward until time horizon 𝑇 or identically, to

minimize her expected cumulative regret.

We consider three dominances that are gradually weaker so that

the setting is more and more general. Let A = {𝜇A
1
, . . . , 𝜇A

𝐾
} ⊂ R

and B = {𝜇B
1
, . . . , 𝜇B

𝐾
} ⊂ R be a pair of categories,

Group-sparse dominance A group-sparsely dominates B, de-

noted by A ⪰𝑠 B, if each element of A is non-negative

and at least one is positive, and each element of B are non-

positive, i.e., max

𝑘∈[𝐾 ]
𝜇A
𝑘

> min

𝑘∈[𝐾 ]
𝜇A
𝑘

≥ 0 ≥ max

𝑘∈[𝐾 ]
𝜇B
𝑘
.

Strong dominance A strongly dominatesB, denoted byA ⪰0 B,

if each element of A is bigger than any element of B, i.e.,

min

𝑘∈[𝐾 ]
𝜇A
𝑘

≥ max

𝑘∈[𝐾 ]
𝜇B
𝑘
.

First-order dominance A first-order dominates B, denoted by

A ⪰1 B, if sup

𝑥 ∈R
𝐹A (𝑥) − 𝐹B (𝑥) ≤ 0 , where 𝐹A (𝑥) =

1

𝐾

∑𝐾
𝑘=1

1{𝜇A
𝑘

≤ 𝑥} is the cumulative distribution function

of a uniform random variable over A.

3 EMPIRICAL EVIDENCE OF DOMINANCE

We illustrate these assumptions on a real dataset. We have collected

the CTR of products in four different categories over one month on

the e-commerce website Cdiscount, one of the leading e-commerce

companies in France. CAT 1 to 3 are three of the largest categories

in terms of revenue while CAT 4 is a smaller category. We have rep-

resented the cumulative distribution function of the four categories

in Figure 1. The following dominances can be highlighted. For the

strong dominance, CAT 1 ⪰0 CAT 4 and CAT 2 ⪰0 CAT 4. For the
first-order dominance, CAT 2 ⪰1 CAT 3 and CAT 3 ⪰1 CAT 4, the
last assertion is not verified in the strong case. CAT 1 and CAT 2 are
not comparable with respect to any partial order. Notice that, had

the first item of CAT 2 performed only 5% worse than observed,
3

then CAT 1 would have been optimal in the first-order sense.

2
All of our results immediately generalize to categories with different number of arms.

3
The CTR of the best item of CAT 2 is so higher than the second one, we could expect it

is actually an outlier, i.e., an artefact of the choice of that specific month and category.
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Figure 1: Cdf of the 4 categories

4 ALGORITHMS

4.1 Category Successive Elimination (CatSE)

The main concept of CatSE is to successively eliminate suboptimal

categories. It behaves in three different ways depending on the

number of categories that are called “active”. The definition of

an active category will depend on the assumption of dominance.

Formally, let 𝛿 ∈ (0, 1) be a confidence level. At time step 𝑡 , it

computes the set of active categories, denoted A(𝑡, 𝛿). Then it

behaves according to the assertion that is verified:

(1) |A(𝑡, 𝛿) | = 0: pulls all arms.

(2) |A(𝑡, 𝛿) | = 1: performs UCB in the active category.

(3) |A(𝑡, 𝛿) | > 1: pulls all arms inside active categories.

4.2 Murphy Sampling (MS)

TheMS algorithm [2] is derived from Thompson Sampling (TS),

the difference being that the sampling respects some inherent

structure of the problem. To define MS, we denote by F (𝑡) =

𝜎 (𝐴1, 𝑋1, . . . , 𝐴𝑡 , 𝑋𝑡 ) the information available after 𝑡 steps and

H𝑑 the assumption of dominance considered. Let Π𝑡 = P (·|F𝑡 ) be
the posterior distribution of the means parameters after 𝑡 rounds.

The algorithm samples, at each time step, from the posterior distri-

butionΠ𝑡−1 (·|H𝑑 ) and then pulls the best arm, which, by definition,

is in the best category sampled at this time step. In comparison, TS

would sample from Π𝑡−1 without taking into account any structure.

5 EXPERIMENTS

Numerical experiments illustrating the performance of our algo-

rithms are presented for two scenarios: in the strong dominance

on Figure 2 and in the first-order dominance on Figure 3. In both

experiments, rewards are drawn from Gaussian distribution with

unit variance and we report the average regret as a function of time.

Both CatSE andMS outperform baseline algorithms, with a clear

advantage for the latter due to it being a fully sequential strategy.
4
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The performance of CatSE𝑠 is due to a more efficient sampling.
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Figure 2: Regrets in the strong dominance scenario

102 103 104
Time

100

200

300

400

500

600

Re
gr
et

UCB
TS
UCT
CatSE1
MS1

Figure 3: Regrets in the first-order dominance scenario

6 CONCLUSION

We introduced a novel bandit framework inspired by e-commerce

applications where arms are assumed to belong to ordered cate-

gories. We confirmed the veracity of our model on real data and

presented two generic algorithms for this setting.

Two problems remain open: the first one is a better exploration

phase in CatSE since it heavily impacts the regret; and the second is

an upper bound on the regret of theMS algorithm since it is highly

competitive in practice. We believe that it is asymptotically optimal

and that it can be applied to other model of structured bandits.
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