
Model-Driven Generation of Web Applications in UWE1

Andreas Kraus, Alexander Knapp, and Nora Koch

Ludwig-Maximilians-Universität München, Germany
{krausa, knapp, kochn}@pst.ifi.lmu.de

Abstract. Model-driven engineering (MDE) techniques address rapid changes
in Web languages and platforms by lifting the abstraction level from code to
models. On the one hand models are transformed for model elaboration and
translation to code; on the other hand models can be executable. We demon-
strate how both approaches are used in a complementary way in UML-based
Web Engineering (UWE). Rule-based transformations written in ATL are de-
fined for all model-to-model transitions, and model-to-code transformations
pertaining to content, navigation and presentation. An UWE run-time environ-
ment allows for direct execution of UML activity models of business processes.

1 Introduction

Model-driven engineering (MDE) technologies offer one of the most promising ap-
proaches in software engineering to address the inability of third-generation lan-
guages to alleviate the complexity of platforms and express domain concepts effec-
tively [18]. MDE advocates the use of models as the key artifacts in all phases of the
software development process. Models are considered first class entities even replac-
ing code as primary artifacts. Thus, developers can focus on the problem space (mod-
els) and not on the (platform specific) solution space [18]. The main objective is the
separation of the functionality of a system from the implementation details following
a vertical separation of concerns.

The area of Web Engineering, which is a relatively new direction of Software En-
gineering that addresses the development of Web systems [8], is as well focusing on
the MDE paradigm. Most of the current Web Engineering approaches (WebML [5],
OO-H [6], OOWS [20], UWE [9], WebSA [15]) already propose to build different
views of Web systems following a horizontal separation of concerns.

The most well known approach to model driven engineering is the Model Driven
Architecture (MDA) defined by the Object Management Group (OMG)2. Applications
are modeled at a platform independent level and are transformed by model transfor-
mations to other models and (possibly several) platform specific implementations.

1 This research has been partially supported by the project MAEWA “Model Driven Develop-

ment of Web Applications” (WI841/7-1) of the Deutsche Forschungsgemeinschaft (DFG),
Germany and the EC 6th Framework project SENSORIA “Software Engineering for Service-
Oriented Overlay Computers” (IST 016004).

2 Object Management Group (OMG). MDA Guide Version 1.0.1. omg/2003-06-01,
http://www.omg.org/docs/omg/03-06-01.pdf

The development process of the UML-based Web Engineering (UWE [9]) approach is
evolving from a manual process (based on the Unified Process [7]) through a semi-
automatic model-driven process (based on different types of model transformations
[9]) to a model-driven development process that can be traversed fully automatically
in order to produce first versions of Web applications. A table of mapping rules is
shown in [9]. The UWE approach uses recently emerged technologies: model trans-
formation languages like ATL3 and QVT4. In this paper we present a fully imple-
mented version using the ATLAS environment and based on ATL transformations.

UWE applies the MDA pattern to the Web application domain from the top to the
bottom, i.e. from analysis to the generated implementation ([9][12]). Model transfor-
mations play an important role at every stage of the development process. Transfor-
mations at the platform independent level support the systematic development of
models, for instance in deriving a default presentation model from the navigation
model. Then transformation rules that depend on a specific platform are used to trans-
late the platform independent models describing the structural aspects of the Web
application into models for the specific platform. Finally, these platform specific
models are transformed (or serialized) to code by model-to-text transformations. In a
complementary way platform independent models describing the business processes
are executed by a virtual machine thus providing a seamless bridge between modeling
and programming. The UWE approach is completely based on standards – in the
same way as MDA – facilitating extensibility and reusability.

The remainder of this paper is structured as follows: First we give a brief overview
on model-driven Web engineering. Next we present the UWE approach to MDWE
and focus on the model-based generation of Web application using the model trans-
formation language ATL and the run-time environment for executable business proc-
esses. We conclude with a discussion on related work, some remarks and an outline of
our future plans on the use of model transformation languages.

2 Model-Driven Web Engineering

Model-driven Web Engineering (MDWE) is the application of the model-driven
paradigm to the domain of Web software development where it is particularly helpful
because of the continuous evolution of Web technologies and platforms. Different
concerns of Web applications are captured by using separate models e.g. for the con-
tent, navigation, process and presentation concerns. These models are then integrated
and transformed to code whereas code comprises Web pages, configuration data for
Web frameworks as well as traditional program code.

2.1 Variants in Model-Driven Approaches

Model-driven Web development is an effort to raise the level of abstraction at which
we develop Web software. MDWE processes can be achieved either by code genera-

3 ATLAS Transformation Language and Tool, http://www.eclipse.org/m2m/atl/doc/
4 OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Final

Adopted Specification. http://www.omg.org/ docs/ptc/05-11-01.pdf

tion from models or by constructing virtual machines that execute models directly.
The translational approach is predominant and is supported by so called model trans-
formations. An interpretational approach offers the benefits of early verification
through simulation, the ability to separate implementation decisions from understand-
ing of the problem, and the ability to execute the models directly and efficiently on a
wide variety of platforms and architectures.

In addition, following the classification of McNeile there are two interpretations of
the MDE vision named “elaborationist” and “translationist” approaches [14]. Follow-
ing the “elaborationist” approach, the specification of the application is built up step
by step by alternating automatic generation and manual elaboration steps on the way
from computational independent model (CIM) to a platform independent model
(PIM) to a platform specific model (PSM) to code. Today, most approaches based on
MDA are “elaborationist” approaches, which have to deal with the problem of model
and/or code synchronization. Some tools support the regeneration of the higher-level
models from the lower level models, also called reengineering. In a “translationist”
approach the platform independent design models of an application are automatically
transformed to platform specific models, which are then automatically serialized to
code. These PSMs and the generated code must not be modified by the developer
because roundtrip engineering is neither necessary nor allowed. UWE is moving from
an “elaborationist” to a “translationist” approach.

2.2 Role of Model Transformations

Transformations are vital for the success of a model-driven engineering approach for
the development of software or in particular of Web applications. Transformations lift
the purpose of models from documentation to first class artifacts of the development
process. Based on the taxonomy of transformation approaches proposed by Czarnecki
[4] we classify model transformation approaches in model-to-code and model-to-
model approaches, which differ on providing or not a metamodel for the target pro-
gramming language.

Model-to-model transformations translate between source and target models,
which can be instances of the same or different metamodels supporting syntactic
typing of variables and patterns. Two categories of rule-based transformations are
distinguished: declarative and imperative and it is worth to mention two relevant sub-
categories of declarative transformations: graph transformation and relational ap-
proaches. Graph-transformation rules that consist in matching and replacing left-
hand-side graph patterns with right-hand-side graph patterns. AGG5 and VIATRA6
are examples of tools supporting a graph model transformation approach. Relational
approaches are based on mathematical relations. A relation is specified by defining
constraints over the source and target elements of a transformation. A relation has no
direction and cannot be executed. Relational approaches with executable semantics
are implemented with logic programming using unification-based matching, search
and backtracking. QVT and ATL support the relational approach and provide impera-

5 Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg/
6 VIATRA 2 Model Transformation Framework, http://dev.eclipse.org/viewcvs/indextech.cgi/

~checkout~/gmt-home/subprojects/VIATRA2/index.html

tive constructs for the execution of the rules, i.e. they are hybrid approaches. A differ-
ent approach is the declarative and functional transformation language XML for trans-
forming XML documents. As MOF compliant models can be represented in the XML
Metadata Interchange format (XMI), XSLT7 could in principle be used for model-to-
model transformations and transformed to code using languages such as MOFScript
that generate text from MOF models8. This approach has scalability problems, thus it
is not suited for complex transformations.

3 The UWE Approach to MDWE

The approach followed in UWE consists of decoupling the construction of models
using a UML9 profile, defining transformation rules using a model transformation
language, and providing a run-time environment, respectively. Model type transfor-
mations map instances from a source metamodel (defining the source types) to in-
stances of a target metamodel (defining the target types). Therefore, the MDE ap-
proach is based on metamodels and transformations. All metamodels share the same
meta-metamodel (MOF). The proposed solution for the executable models is the use
of a platform specific implementation of the platform independent abstract Web proc-
ess engine. A transformation maps the process flow model to XML nodes, which
represent the corresponding configuration of the runtime environment. This runtime
process engine is part of the platform specific runtime environment.

There is no restriction on the employed modeling tool as long as it supports UML
2.0 profiles and stores models in the standardized model interchange format. We
selected ATL as a Query/View/Transformation language and the ATLAS transforma-
tion engine. The Spring framework was selected as runtime environment engine.

3.1 UWE Process

Applying the MDA principles (see Sect. 2), the UWE approach proposes to build a set
of CIMs, PIMs, and PSMs as results of the analysis, design and implementation
phases of the model-driven process. The aim of the analysis phase is to gather a stable
set of requirements. The functional requirements are captured by means of the re-
quirements model. The requirements model comprises specialized use cases and a
class model for the Web application. The design phase consists of constructing a
series of models for the content, navigation, process, presentation and adaptivity as-
pects at a platform independent level. Transformations implement the systematic
construction of dependent models by generating default models, which then can be
refined by the designer. Finally, the design models are transformed to the platform
specific implementation. This UWE core process is extended with the construction of
a UML state machine – called “big picture” in our approach – that integrates the de-
sign models. The objective of the big picture model is the verification of the UWE

7 W3C. XSL Transformations (XSLT) Version 1.0, www.w3.org/TR/xslt
8 Eclipse subproject. MOFScript. http://www.eclipse.org/gmt/mofscript/
9 OMG. Unified Modeling Language 2.0, 2005. http://www.omg.org/ docs/formal/05-06-04.pdf

models by the tool Hugo/RT, a UML model translator for model checking and theo-
rem proving [10]. In addition, architectural features can be captured by a separate
architecture model using the techniques of the WebSA (Web software architecture)
approach [15] and further integrated to the so far built functional models.

In this work we focus on the UWE core process depicted in Fig. 1 as a stereotyped
UML activity diagram. Models are represented with object nodes and transformations
as stereotyped activities (special circular icon). A chain of transformations then de-
fines the control flow.

Fig. 1. UWE core process for CIM to PIM and PIM to PIM

3.2 UWE Metamodel

The metamodel is structured into packages, i.e. requirements, content, navigation,
process, presentation and adaptation. It is defined as a “profileable” extension of the
UML 2.0 metamodel providing a precise description of the concepts used to model
Web applications and their semantics. We restrict ourselves to illustrate the approach
by means of an excerpt of the presentation metamodel, for further details on the UWE
metamodel see [11] and [12].

Fig. 2. UWE presentation metamodel

The presentation metamodel defines the modeling elements required to specify the
layout for the underlying navigation and process models. A PresentationClass is
a special class representing a Web page or part of it and is composed of user interface
elements and other presentation classes. UIElements are classes that represent the
user interface elements in a Web page. The presentation metamodel is depicted in Fig.
2. Anchors for example represent links in a Web page, and optionally a format ex-
pression may be defined for specification of the label that the anchor should have.

OCL class invariants are used to define the well-formedness rules for models, i.e.
the static semantics of a model, to ensure that a model is well formed before execut-
ing a transformation.

3.3 Model to Model Transformations in UWE

Requirement specification is based on UML use cases for the definition of the func-
tionality of a Web application. The design phase consists of constructing a series of
models for the content, navigation, process and presentation aspects at a platform
independent level. Transformations implement the systematic construction of depend-
ent models by generating default models, which then have to be refined by the de-
signer. The approach uses the ATL transformation language in all phases of the de-
velopment process.

We illustrate our approach by means of a simple project management system,
which is part of the GLOWA Danube system, an environmental decision support
system for the water balance of the upper Danube basin. The project management
system allows adding, removing, editing and viewing of two types of projects, user
projects and validation projects. At CIM level the UWE profile provides different
types of use cases for treating browsing and transactions (static and dynamic) func-
tionality. UWE proposes the use of stereotypes «navigation» and «web process», to
model navigation and process aspects, respectively. A content model of a Web appli-
cation is automatically derived from the requirements model by applying a transfor-
mation Requirements2Content. The developer can refine the resulting default
content model by adding additional classes, attributes, operations, associations etc.
Such a refined content model is represented as a UML class diagram (see Fig. 3).

Fig. 3. Content model of project management system (simplified)

Fig. 4. Partial navigation model of project management system

The navigation model represents a static navigation view of the content and pro-
vides entry and exit points to Web processes. Nodes stereotyped as «navigation class»
and «process class» like Project and RemoveProject (Fig. 4) represent information
from the content model and use case model (requirements). They are generated by the
rules ContentClass2NavigationClass and ProcessIntegration respec-
tively. Nodes stereotyped as «menu» allow for the selection of a navigation path.

Fig. 5. Process flow for remove project

Fig. 6. Presentation model for project

manager

Links («navigation link» and «process link») specify the navigation paths between
nodes. The transformation rule CreateProcessDataAndFlow automatically gener-
ates the process data and a draft of the process flow for Web processes. Process flows
are represented as UML activity diagram where «user action»s, such as RemovePro-
jectInput in Fig. 5, are distinguished to support a seamless application of transforma-
tion rules. The transformation NavigationAndProcess2Presentation automati-
cally derives a presentation model from the navigation model and the process model.
For each node in the navigation model and each process class that represents process
data a presentation class is constructed and for each attribute a corresponding presen-

tation property is created according to the type of a user interface element. For exam-
ple a «text» stereotyped class is created for each attribute of type String and a «an-
chor» stereotyped class is created for an attribute of type URL. An excerpt of the
results is shown in Fig. 6.

4 UWE-Based Generation of Web Applications

The main effort of an MDE approach to Web application generation is bridging the
gap between the abstractions present in the design models (content, navigation, proc-
ess, and presentation) and the targeted Web platform. In fact, this gap is quite narrow
for UWE content and presentation models: The UML static structure used for describ-
ing content in UWE (if we may neglect more arcane modeling concepts like advanced
templates, package merging and the like) has a rather direct counterpart in the backing
data description techniques of current Web platforms, like relational database models,
object-relational mappings, or Java beans. Similarly, an UWE presentation model,
being again based on UML static structures, can be seen as a mild abstraction of Web
page designs, using, e.g., plain HTML, Dynamic HTML, or Java Server Pages (JSPs).
This abstraction gap is comparable for UWE navigation structures using only naviga-
tion nodes and access primitives. The situation, however, changes for UWE business
process descriptions, which use a workflow notation. In particular, the token-based,
Petri net-like interpretation of UML activities and their combination of control and
data flow, which is especially well-suited for a declarative data transport, differs no-
tably from the more traditional, control-centric programming language concepts sup-
ported by current Web platforms.

Thus, for generating a Web application from an UWE design model, we employ on
the one hand a transformational and on the other hand an interpretational approach:
Transformation rules are adequate for generating the data model and the presentation
layer of a Web application from the UWE content, navigation structure and presenta-
tion models, where the differences in modeling and platform abstraction is low. The
higher differences in abstraction and formalism apparent in the process models can be
more easily overcome interpreting these executable models directly in a virtual ma-
chine. For concreteness, we describe the Web application generation process from
UWE models by means of a single Web platform, the Spring framework10, but, by
exchanging the model transformations and adapting the virtual machine, the principal
ideas could be easily transferred to other Web technologies like using simply Java
Server Pages (JSPs) or, more heavy weightily, ASP.NET.

Spring is a multi-purpose framework based on the Java platform modularly inte-
grating an MVC 2-based11 Web framework with facilities for middleware access,
persistence, and transaction management. Its decoupling of the model, view, and
controller parts directly reflects the general structure of the UWE modeling approach
and also supports the complementary use of transformation rules and an execution
engine in Web application generation: Minimal requirements are imposed by the
Spring framework on the model technology; in fact, any kind of Plain Old Java Ob-

10 Spring Framework, http://www.springframework.org/
11 Sun ONE Architecture Guide, 2002. http://www.sun.com/software/sunone/docs/arch/

jects (POJOs) can be used, and the access to the model from the view or the controller
parts only relies on calling get- and set-methods. We illustrate the approach defin-
ing transformation rules from an UWE content model into Java beans. The view tech-
nology is separated from the model and the controller part by a configuration mecha-
nism provided by Spring; thus technologies like JSPs, Tiles, or Java Server Faces can
be employed. We define transformation rules from an UWE presentation model into
JSPs. Finally, the controller part provides a hook for deploying a virtual machine for
business process interpretation, as it can be customized through any Java class im-
plementing a specific interface from the Spring framework. Configuration data for the
virtual machine are generated from the UWE process and navigation model.

Fig. 7. Overview of platform specific implementation

An overview of the transformations and the execution engine we describe in the
following is given in Fig. 7. The virtual machine for business process execution and
the integration into navigation is wrapped into a runtime environment that is built on
top of the Spring framework and also encapsulates the management of data and the
handling of views.

4.1 Runtime Environment

The structure of the runtime environment is shown in Fig. 8. The Spring framework is
configured to use a specific generic controller implementation named MainControl-
ler. The controller has access to a set of objects with types generated from the con-
tent model and one designated root object as entrance point for the application. Model
objects are accessed by their get- and set- methods and the operations defined in the
content model. Additionally, the controller manages a set of NavigationClassInfo
objects which contain information about the navigation structure regarding inheri-
tance between navigation classes and are generated from the navigation model. A set
of ProcessActivity objects generated from the process model represents the avail-
able Web processes; for each session at most one process can be active at a time.

Views, i.e. Web pages, are not explicitly managed by the runtime environment, only
string identifiers are passed. The Spring framework is responsible for resolving these
identifiers to actual Web pages that were generated from the presentation model.

The method handleRequest handles incoming Web requests by modifying the
model and returning a corresponding view. When this method is called, it first checks
if a process is active in the current session. If it is, then the execution is delegated to
the process runtime environment as detailed in Sect. 4.3. If not, then the next object
from the content model that should be presented to the user is resolved by its identi-
fier. Finally, a view identifier is returned and the corresponding Web page is shown to
the user.

Fig. 8. Runtime environment

4.2 Content and Navigation

The transformation of the content model into Java beans is rather straightforward. The
following example illustrates the outcome for the transformation rule applied to Pro-
jectManager:

public class ProjectManager {
 private List<Project> projects;
 public List<Project> getProjects() {
 return projects;
 }
 public void setProjects(List<Project> projects) {
 this.projects = projects;
 }
 public void removeProject(Project project) {
 // to be implemented manually
 }
}

The navigation model does not have to be directly transformed into code because
in the transformation of the presentation model the references to elements from the
navigation model are resolved so that the generated pages directly access the content

model. Nevertheless, a minimum knowledge about the navigation model is needed in
the runtime environment to handle dynamic navigation. For instance, in the naviga-
tion model of Fig. 4 a process link leads from the process class AddProject to the
abstract navigation class Project with the two navigation sub classes UserProject and
ValidationProject. Thus, when following the link from AddProject to a created project
then the presentation class for the navigation subclass for the dynamic content object
type should be displayed.

4.3 Process

Because of the complex execution semantics of activities based on token flows we
integrate a generic Web process engine into the platform specific runtime environ-
ment presented in Sect. 4.1. The basic structure of the Web process engine is given in
Fig. 9. A process activity comprises a list of activity nodes and set of activity edges.
Activity nodes can hold a token which is either a control token, indicating that a flow
of control is currently at a specific node, or an object token which indicates that an
object flow is at a specific node. Activity edges represent the possible flow of tokens
from one activity node to another. Multiple tokens may be present at different activity
nodes at a specific point in time. The method acceptsToken of an activity node or
an activity edge is used to query if a specific token would currently be accepted which
then could be received by the method receiveToken. An activity has an input pa-
rameter node and optionally an output parameter node which serve to hold input and
output object tokens.

The control nodes supported by the process engine are decision and merge nodes,
join and fork nodes, and final nodes. The object nodes supported are pins representing
input and output of actions, activity parameter nodes for the input and output of proc-
ess activities, central buffer nodes for intermediate buffering of object tokens, and
datastore nodes representing a permanent buffer. The implementation of these nodes
corresponds to the UML 2.0 specification.

Before starting the execution of a process activity it has to be initialized by calling
the method init. This results in initializing all contained activity nodes and placing
an object token in the input parameter node as illustrated by the following simplified
Java code lines:

public void init(Object inputParameter) {
 // initialize all activity nodes
 for (ActivityNode n : activityNodes)
 n.init();
 // place new object token in input parameter node
 inputParameterNode.receiveToken(new ObjectToken(inputParameter));
 finished = false;
}

The complete execution of a process activity comprises the handling of user inter-
actions, like RemoveProjectInput and ConfirmRemoveProjectInput in Fig. 5. Thus,
when a process activity contains at least one user interaction then it cannot be exe-
cuted completely in one step. The method next of a process activity is called from
the runtime environment to execute the process activity until the next user interaction
is encountered or the process activity has finished its execution. Moreover, either the

next user interaction object to be presented to the user is returned; or in case the activ-
ity has finished with a return value, the output parameter object is shown. The follow-
ing code lines give an outline to the implementation of the method next:

Fig. 9. Runtime process activity

public Object next() {
 // process input requested after last method call
 for (ActivityNode n : activityNodes) {
 if (n.isWaitingForInput()) {
 n.processInput();
 break;
 }
 }
 // token passing loop
 while (true) {
 for (ActivityNode n : activityNodes) {
 n.next();
 // return in case of waiting for user input
 if (n.isWaitingForInput())
 return n.getInputObject();
 else {
 // return if the output parameter node has an object token
 if (n == outputParameterNode && n.hasToken())
 return outputParameterNode.getObjectToken().getObject();
 // return in case of activity final node reached
 else
 if (n instanceof ActivityFinalNode && n.hasToken()) {
 return null;
 }
 }
 }
}

First the method processInput of the first activity node that was waiting for input
in the last step is called to process the user input that is now available in the user in-

teraction object. Then all activity nodes are notified to execute their behavior by call-
ing the method next. If a node then indicates that it is waiting for input the method
returns with the user interaction object returned by this node. If a token arrives either
at an activity output parameter node or at an activity final node the execution of the
process activity terminates and the method returns.

4.4 Presentation

We outline the transformation from the presentation model to Java Server Pages.
The metamodel of JSPs is shown in Fig. 10. For every user interface element of type
X in the presentation metamodel a corresponding ATL transformation rule X2JSP is
responsible for the transformation of user interface elements of the given type.

Root
documentName : String

JSPDirective

Node
name : String
value : Str ing

TextNodeAttribute Element

+children

*

+parent
0..1

Fig. 10. JSP metamodel

Each presentation class is mapped to a root element that includes the outer struc-
ture of an HTML document. All mappings of user interface elements are included in
the body tag.

rule PresentationClass2JSP {
 from
 pc : UWE!PresentationClass
 to
 jsp : JSP!Root(documentName <- pc.name + '.jsp',
 children <- Sequence{ htmlNode }),
 htmlNode : JSP!Element(name <- 'html',
 children <- Sequence{ headNode, bodyNode }),
 headNode : JSP!Element(name <- 'head',
 children <- Sequence{ titleNode }),
 titleNode : JSP!Element(name <- 'title',
 children <- Sequence{ titleTextNode }),
 titleTextNode : JSP!TextNode(value <- pc.name),
 bodyNode : JSP!Element(name <- 'body',
 children <- Sequence{ pc.ownedAttribute->collect(p | p.type) })
}

Each user interface element of type form is mapped to an HTML form element.
All contained user interface elements are placed inside the form element. The ac-
tion attribute points to the target of the corresponding link associated to the form by
using a relative page name with the suffix .uwe.

rule Form2JSP {
 from

 uie : UWE!Form
 to
 jsp : JSP!Element(name <- 'form',
 children <- Sequence{ actionAttr, uie.uiElements }),
 actionAttr : JSP!Attribute(name <- 'action',
 value <- uie.link.target.name + '.uwe')
}

All remaining UI elements, like anchors, text, images are transformed similarly [12].
The JSP rendering of the presentation class ProjectManager of Fig. 6 is shown in Fig.
11.

Fig. 11. Screenshot of JSP for the presentation class ProjectManager

5 Related Work

Other methodologies in the Web engineering domain are also introducing model-
driven development techniques in their development processes. For example, the Web
Software Architecture (WebSA [15]) approach complements other Web design meth-
ods, like OO-H and UWE, by providing an additional viewpoint for the architecture
of a Web application. Transformations are specified in a proprietary transformation
language called UML Profile for Transformations, which is based on QVT.

MIDAS [3] is another model driven approach for Web application development
based on the MDA approach. For analysis and design it is based on the content, navi-
gation and presentation models provided by UWE. In contrast to our approach, it
relies on object-relational techniques for the implementation of the content aspect and
on XML techniques for the implementation of the navigation and presentation as-
pects. A process aspect is not supported by MIDAS yet.

The Web Markup Language (WebML [5].) is a data-intensive approach that until
now does use neither an explicit metamodel nor model transformation languages. The
corresponding tool WebRatio internally uses a Document Type Definition (DTD) for
storing WebML models and the XML transformation language XSLT for model-to-
code transformation. WebML transformation rules are proprietary part of its CASE
tool. Schauerhuber et al. present in [17] an approach to semi-automatically transform
the WebML DTD specification to a MOF compatible metamodel.

A recent extension of the Object Oriented Web Solution (OOWS [19]) supports
business processes by the inclusion of graphical user interfaces elements in their
navigation model. The imperative features of QVT, i.e. operational mappings are used
as transformation language. In [20] OOWS proposes the use of graph transformations
to automate its CIM to PIM transformations. A similar approach is used in W2000
[1]. SHDM [13] and Hera [21]are both methods centered on the Semantic Web. Hy-
perDE – a tool implementing SHDM – is based on Ruby on Rails extended by naviga-
tion primitives. Hera instead only applies model-driven engineering for the creation of
a model for data integration.

Another interesting model driven approach stems from Muller et al. [16]. In con-
trast to this work, a heavyweight non-profilable metamodel is used for the hypertext
model and the template-based presentation model, nevertheless UML is used for the
business model. A language called Xion is used to express constraints and actions. A
visual model driven tool called Netsilon supports the whole approach.

6 Conclusions and Future Work

We have presented an MDE approach to the generation of Web applications from
UWE design models. On the one hand, model transformation rules in the transforma-
tion language ATL translate the UWE content and presentation models into Java
beans and JSPs; on the other hand, a virtual machine built on top of the controller of
the Spring framework executes the business processes integrated into the navigation
structure. These are the first steps towards a “translationist” vision of transformations
of platform independent models to platform specific models in UWE.

The combination of a translational and interpretational approach offers a high de-
gree of flexibility to generate Web applications for a broad range of different target
technologies. The approach presented in this work is further extended in [12], includ-
ing a detailed description of computational independent models (CIMs) and platform
independent models (PIMs) as well as transformations from CIM to PIM and PIM to
PIM, which are also expressed as ATL transformation rules. The ATL transforma-
tions of this work are easily transferable to QVT.

Our future work will focus on applying the model transformation approach to other
Web applications concerns, such as adaptivity and access control. An aspect-oriented
modeling approach is used to model these concerns in UWE and still needs the defini-
tion of appropriate transformations. We also plan to analyze the applicability of an
MDE approach to Web 2.0 features, e.g. Web services and Rich Internet Applications
(RIAs) using AJAX technology in the model-driven development process of UWE.

References

[1] Luciano Baresi, Luca Mainetti. “Beyond Modeling Notations: Consistency and Adaptabil-
ity of W2000 Models”. Proc. ACM Symp. Applied Computing (SAC’05), Santa Fe, 2005.

[2] Michael Barth, Rolf Hennicker, Andreas Kraus, Matthias Ludwig. “DANUBIA: An Inte-
grative Simulation System for Global Change Research in the Upper Danube Basin”. Cy-
bernetics and Systems, Vol. 35, No. 7-8, 2004, pp. 639-666.

[3] Paloma Cáceres, Valeria de Castro, Juan M. Vara, Esperanza Marcos. “Model transforma-
tion for Hypertext Modeling on Web Information Systems”, Proc. ACM Symp. Applied
Computing (SAC’06), Dijon, 2006.

[4] Krzysztof Czarnecki, Simon Helsen. “Classification of Model Transformation Ap-
proaches”. Proc. OOPSLA’03 Wsh. Generative Techniques in the Context of Model-
Driven Architecture, Anaheim, 2003.

[5] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, Maristella
Matera. “Designing Data-Intensive Web Applications”. Morgan Kaufman, 2003.

[6] Jaime Gómez, Cristina Cachero. “OO-H: Extending UML to Model Web Interfaces”.
Information Modeling for Internet Applications. IGI Publishing, 2002.

[7] Ivar Jacobson, Grady Booch, Jim Rumbaugh. “The Unified Software Development Proc-
ess”. Addison Wesley, 1999.

[8] Gerti Kappel, Birgit Pröll, Siegfried Reich, Werner Retschizegger (eds.). “Web Engineer-
ing”, John Wiley, 2006.

[9] Nora Koch. “Transformations Techniques in the Model-Driven Development Process of
UWE”. Proc. 2nd Wsh. Model-Driven Web Engineering (MDWE’06), Palo Alto, 2006.

[10] Alexander Knapp, Gefei Zhang. “Model Transformations for Integrating and Validating
Web Application Models”. Proc. Modellierung 2006 (MOD’06). LNI P-82, pp. 115-128,
2006.

[11] Andreas Kraus, Nora Koch. A Metamodel for UWE. Technical Report 0301, Ludwig-
Maximilians-Universität München, Germany, 2003.

[12] Andreas Kraus. “Model Driven Software Engineering for Web Applications”, PhD. The-
sis, Ludwig-Maximilians-Universität München, Germany, 2007, to appear.

[13] Fernanda Lima, Daniel Schwabe. “Application Modeling for the Semantic Web”. Proc.
LA-Web 2003, Santiago, IEEE Press, pp. 93-103, 2003.

[14] Ashley McNeile. MDA: The Vision with the Hole?
http://www.metamaxim.com/download/documents/MDAv1.pdf, 2003.

[15] Santiago Meliá, Jaime Gomez. “The WebSA Approach: Applying Model Driven Engi-
neering to Web Applications”. J. Web Engineering, 5(2), 2006.

[16] Pierre-Alain Muller, Philippe Studer, Frederic Fondement, Jean Bézivin. “Platform inde-
pendent Web application modeling and development with Netsilon”. Software & System
Modeling, 4(4), 2005.

[17] Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer. “Bridging existing Web
Modeling Languages to Model-Driven Engineering: A Metamodel for WebML”, In: Proc.
2nd Wsh. Model-Driven Web Engineering (MDWE’06), Palo Alto, 2006.

[18] Douglas Schmidt. “Model-Driven Engineering”. IEEE Computer 39 (2), 2006.

[19] Victoria Torres, Vicente Pelechano, Pau Giner. “Generación de Aplicaciones Web basadas
en Procesos de Negocio mediante Transformación de Modelos”. Jornadas de Ingeniería de
Software y Base de Datos (JISBD), XI, Barcelona, Spain, 2006.

[20] Pedro Valderas, Joan Fons, Vicente Pelechano. “From Web Requirements to Navigational
Design – A Transformational Approach”. Proc. 5th Int. Conf. Web Engineering
(ICWE’05). LNCS 3579, 2005.

[21] Richard Vdovjak, Geert-Jan Houben. “A Model-Driven Approach for Designing Distrib-
uted Web Information Systems”. Proc. 5th Int. Conf. Web Engineering (ICWE’05). LNCS
3579, 2005.

