
Lightweight Verification with Dependent Types

Aaron Stump

Computer Science and Engineering Dept.
Washington University in St. Louis

Abstract

Dependent types, studied for many years in Logic, have recently been gaining
attention in Functional Programming Languages for expressing rich properties as
types. A simple example is a type 〈list A n〉, for lists of length n holding objects
of type A. A more complex example is 〈trm G T 〉, for terms in some object
language which have object-language type T in context G. Dependently typed
programming languages seek to support static verification of code manipulating
such data types, by statically enforcing the constraints the data types impose.
The verification is lightweight in the sense that the aim is typically to verify
preservation of datatype properties, rather than full functional specifications of
programs.

This talk will explore dependently typed programming in the context of
Guru, a new dependently typed programming language under development at
Washington University in St. Louis. Guru lifts the restriction to terminating
programs which is commonly required by dependently typed programming lan-
guages (such as Coq, Epigram, and ATS, to name just a few). This is done by
the novel technical feature of strictly separating program terms from proofs, and
types from formulas, thus going counter to the commonly used Curry-Howard
isomorphism. We will consider dependently typed programming in Guru via sev-
eral examples: tree operations which are statically verified to preserve the binary
search tree property, and compilation of simply typed object programs which is
statically verified to preserve the programs’ object-language type.


