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Abstract. Due to the technical gap between the language models avail-
able for low-resource languages and the state-of-the-art models available
in English and Chinese, a simple approach that deploys automatic trans-
lation and ensembles predictions from Portuguese and English models is
competitive with monolingual Portuguese approaches that may demand
task-specific preprocessing and hand-crafted features. We performed our
experiments on ASSIN 2 – the second edition of the Avaliação de Sim-
ilaridade Semântica e Inferência Textual (Evaluating Semantic Similar-
ity and Textual Entailment). On the semantic textual similarity task,
we performed multilingual ensemble techniques to achieve results with
higher Pearson correlation and lower mean squared error than BERT-
multilingual, and on the textual entailment task, BERT-multilingual
could be surpassed by automatically translating the corpus into English
and then fine-tuning a large RoBERTa model over the translated texts.

Keywords: Semantic textual similarity · Textual entailment · Trans-
former architecture

1 Introduction

Although recent advances in Transformer architectures [8] have significantly im-
proved the state-of-the-art for several downstream natural language processing
tasks, such models usually require training to be performed with billions of pa-
rameters on massive datasets. And as only major companies and research centers
can a↵ord this process, a linguistic bias has arisen in the field: most state-of-the-
art models are available only for the languages that predominate on the areas
where these entities are based, namely English and Chinese [14].

We demonstrate that, due to the current gap between the models available for
Portuguese and these two languages, a simple approach that deploys automatic
translation and ensembles predictions from Portuguese and English models is
competitive with monolingual approaches that may demand task-specific pre-
processing and hand-crafted features to achieve the same accuracy.
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For this purpose, we examine the e↵ectiveness of multiple ensemble tech-
niques on the Semantic Textual Similarity (STS) and Recognizing Textual En-
tailment (RTE) tasks proposed on the ASSIN 2 dataset3 [13], while fine-tuning
BERT-multilingual [8] over the original Portuguese datasets and RoBERTa [11]
over the automatic translation of the original datasets into English. In order to
ensure the reproducibility of our results, we have open-sourced our models and
experiments4.

In section 2 we describe some of the related work for Transformer architec-
tures in low-resource languages. The approaches to the Transformer architecture
investigated in this paper are described in section 3. Section 4 shows the approach
considered for ensemble modeling. The experiments carried out for evaluating
our model for the ASSIN2 tasks are described in section 5. Section 6 finishes this
paper with its conclusions and proposals for future work.

2 Related Work

As Transformer architectures are reasonably recent, there are few works which
have attempted to apply large pretrained English models to other linguistic
domains. Fonseca fine-tuned the GPT-2 model in Portuguese, and his results5

indicate that this can become a viable approach for tackling text generation
problems in the Portuguese language.

However, the strategy of automatically translating a dataset into a foreign
language and then ensembling models from distinct linguistic domains to address
a natural language processing task has already been throughly researched in the
past. In the field of sentiment analysis, Wan et al. [20] successfully improved the
accuracy of sentiment analysis on Chinese customer reviews by ensembling the
predictions produced from both the original Chinese dataset and its translation
into English, achieving combined results which were better than either approach
considered in isolation.

Under di↵erent circumstances, Araujo et al. [3] has shown that, for some par-
ticular languages, simply translating the dataset into English and applying the
state-of-the-art sentiment analysis methods available for the English language
yielded better results than the existing language-specific approaches evaluated
during their experiments.

Tian et al. [19] applied a similar approach for the Spanish STS task proposed
at SemEval-2017. After automatically translating the entire dataset, they applied
an ensemble of the state-of-the-art techniques available for the task. However,
they also included in his ensemble nine features that measured the quality of
the translated text, namely BLEU, GTM-3, NIST, -WER, -PER, Ol, -TERbase,
METEOR-ex and ROUGE-L.

Belinkov et al. [4] have demonstrated that current Neural Machine Trans-
lation (NMT) models, which include the external translation service utilized in

3 https://sites.google.com/view/assin2/
4 https://github.com/ruanchaves/assin/
5 https://medium.com/ensina-ai/ensinando-portugues-ao-gpt-2-d4aa4aa29e1d
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our experiments, are highly vulnerable to adversarial noise, as well as natural
noise produced by native speakers of the language. Such noise cannot be easily
addressed by existing tools, such as spell checkers. Therefore, having features
that account for the quality of the translation are certainly helpful while build-
ing ensembles with features extracted from translated text either through deep
learning methods or traditional natural language processing techniques.

Although machine translation may be e↵ective, it may not be suitable for
certain industrial settings, specially when one cannot a↵ord to call an external
translation service several times. Tang et al. [18] trained a shared multilingual en-
coder that successfully leveraged knowledge from English labeled data in Spanish
STS tasks, without requiring the annotation of hand-crafted features, or having
to resort to machine translation during inference. His results were consistently
better than those achieved by monolingual approaches, and they were able to
reach the same performance as the machine translation methods that were eval-
uated during his experiments. Shared multilingual encoders for STS tasks have
also been trained by Chidambaram et al. [6].

Compared to the Portuguese language, a relatively large amount of Trans-
former models have been trained for Spanish and other major Romance lan-
guages. To the best of our knowledge, no large Transformer model trained ex-
clusively for Portuguese has ever been made publicly available, and no other
paper has ever investigated how Transformer architectures and machine trans-
lation can be leveraged for natural language processing tasks in the Portuguese
language.

3 Transformer architectures

Only two transformer architectures were considered for our experiments: BERT-
multilingual and RoBERTa. We started from pretrained models, which were
fine-tuned to a STS task through the Transformers library developed by Hugging
Face [22].

3.1 BERT-multilingual

BERT stands for Bidirectional Encoder Representations from Transformers [8].
Devised as an alternative to unidirectional language models, BERT pretrains
deep bidirectional representations that are simultaneously learned both for left
and right contexts. As a result, the last layers of a pretrained BERT model can
be fine-tuned to specific natural language tasks without requiring any substantial
modifications on its architecture.

In order to define its prediction goal, BERT utilizes two training strategies.
One of them is called Masked LM (MLM). Before being fed into the model, 15%
of all tokens are replaced by either a random token or a fixed [MASK] token. In
this way, the model has the training goal to improve its ability to predict the
original token that occupied these positions.
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For its second strategy, the model is pretrained for a binarized Next Sentence
Prediction (NSP) task with sentences A and B, where B has an equal chance of
being either a randomized sentence or the actual next sentence after A.

In our experiments, we utilized the multilingual, cased BERT model, trained
with 110 million parameters on 104 languages, including Portuguese. These lan-
guages were chosen because they are the ones with the largest Wikipedias, and
the entire Wikipedia dump for each language was taken as the training data. Al-
though overrepresented languages were downsampled during the training stage,
no downsampling was performed among dialects within the same language. It
should also be noticed that Wikipedia does not impose any Portuguese dialect
for any of its articles, and therefore, it is not possible to di↵erentiate between
them on its dumps.

The flexibility of BERT has contributed to establish it as one of the main
paradigms for advancing the state-of-the-art in natural language processing
tasks. As of today, most state-of-the-art models are either directly or indirectly
based on the original BERT architecture [17].

3.2 RoBERTa

After the release of BERT, several authors studied the model and pointed out
architectural choices that should be reconsidered. The main issues lied on its
training strategies, the Masked LM and Next Sentence Prediction tasks. In fact,
some of the limitations found within these strategies had already been acknowl-
edged on the paper that first presented the BERT architecture [8].

In our experiments, we have used one of the models that improved on BERT
while trying to reach a proper training strategy: RoBERTa, which stands for
Robustly Optimized BERT Pretraining Approach [11]. While maintaining the
same base architecture as BERT, RoBERTa improves on its results by removing
the next sentence prediction task, dynamically changing the masking pattern
applied to the training data, and increasing the training time, the size of the
batches, the volume of data and the input sequence length.

As demonstrated by [2], the Next Sentence Prediction (NSP) objective hurts
the performance of multilingual versions of BERT even more than it does when
it is trained on a single language. Therefore, in situations where both models
receive an input of the same quality, we can only expect that RoBERTa will
consistently perform better than BERT-multilingual.

We can also expect better performance even when comparing multilingual
versions of RoBERTa with multilingual versions of BERT. In fact, Conneau et al.
[7] recently released the a model called XLM-RoBERTa, which not only achieves
results better than BERT-multilingual, but also obtains results competitive with
monolingual versions of RoBERTa and other state-of-the-art monolingual models
after monolingual fine-tuning on the GLUE and XNLI benchmarks.

Although there are versions of RoBERTa available which have been pre-
viously fine-tuned on MNLI and the output of GPT-2, we performed our ex-
periments only on a pretrained version of RoBERTa which was based on the
architecture of BERT-large.
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4 Ensemble Techniques

For both STS and RTE tasks, BERT-multilingual was fine-tuned on the orig-
inal, Portuguese dataset, and RoBERTa was fine-tuned on the same dataset
after it was automatically translated into English. In this way, it can be said
that a stronger model (RoBERTa) is receiving an input of lower quality (an au-
tomatically translated dataset) while the weaker model (BERT-multilingual) is
receiving an input of better quality (the original dataset).

After fine-tuning, we tested two distinct ensemble techniques to combine the
predictions generated by both Transformers. The first one was averaging: the
fine-tuned models generated predictions for the test set, and then these scores
were averaged through an arithmetic mean to produce the final submission.

The second technique utilized is most commonly known as stacking. A careful
and diagrammatic description of the stacking ensemble technique has been made
by Kyriakides et al. [10]. In this approach, BERT and RoBERTa are called base
learners (or level 0 learners), which will provide metadata to train a meta-learner
(or level 1 learner), which in our particular setup happens to be a Multilayer
Perceptron (MLP).

The metadata was generated through K-fold cross validation over the entire
training set. Both BERT and RoBERTa were fine-tuned on their correspond-
ing training sets for each possible combination of K � 1 folds. Therefore, an
ensemble made through K-fold stacking will generate K distinct BERT models
fine-tuned on the original dataset, and K distinct RoBERTa models fine-tuned
on the translated dataset.

After generating 2K fine-tuned models, each one of them will generate predic-
tions for the fold from the training set which was missing during its fine-tuning
process. Although all labels from the training set are known to us, they are tem-
porarily ignored for the sake of generating the metadata for the MLP, and we
concatenate the predictions from all fine-tuned models. As a result, we will have
produced metadata for the entire training set, which will be used to train the
MLP.

The MLP, our meta-learner, is trained while taking the metadata generated
by each transformer as its input, and the gold score for the sentence pairs of
the training set as the training goal. During this process, the MLP will try to
learn how to properly weight the contributions of each transformer on each score
range.

After training the MLP, we fine-tune one BERT and one RoBERTa model
over their entire corresponding training sets, without considering any division
into folds. These models produce predictions, which are combined by the trained
MLP to produce the final predicted scores. If successful, this trained meta-learner
will have produced scores that are more accurate than the predictions generated
by either base learner considered in isolation.

We did not test any averaging techniques other than a simple arithmetic
mean, and our MLP was made only of two Dense layers of 64 neurons with a
ReLU activation function followed by a single Dense layer of one neuron with a
linear activation function.
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It should be noticed that there is a trade-o↵ between improving the overall
performance of the ensemble and the amount of computational resources required
to fine-tune transformer models for a higher amount of folds. There are also
diminishing returns for increasing the amount of folds: although the accuracy
will initially increase, it is expected to stabilize after the folds become small
enough for the MLP to learn the general patterns present on the metadata.

5 Experimental Evaluation

We evaluated the performance of our models on the ASSIN 2 dataset. Part of
our experiments were submitted during the ASSIN 2 workshop, and then their
accuracy was compared with the results obtained by the other participants.
In this section, we examine some particular features of the dataset and how
they influenced the obtained results. These results are described both in their
entirety and, in the case of the STS task, also separately for five distinct gold
score intervals.

5.1 Dataset

The dataset consists of sentence pairs in the Portuguese language, with human-
annotated scores for Semantic Textual Similarity and Textual Entailment. The
Semantic Textual Similarity task is available in the GLUE benchmark [21] as the
Semantic Textual Similarity Benchmark (STS-B) [1], and the Textual Entailment
task is available as Recognizing Textual Entailment (RTE) [5]. Both tasks are
present on every ASSIN dataset.

During our experiments, RTE was treated as being a regression task, exactly
like the STS task, rather than being a classification task. In other words, while
STS was treated as the task of predicting scores ranging from 1 to 5, RTE was
similarly treated as the task of predicting scores ranging from 0 to 1, taking
”None” as 0, ”Entailment” as 1. And then, before submitting our files to the
o�cial evaluation script for the ASSIN 2 dataset, the entailment scores were
rounded up and converted back to their corresponding labels.

Datasets for Brazilian and European Portuguese were released during the
first edition of ASSIN [9]. Their sentence pairs were collected from Google News,
and had the linguistic complexity that can be expected from real-world sources.
However, during ASSIN 2, a single dataset was released which was purposefully
simple, without any named entities, instances of indirect speech or verbs not
conjugated in the present. Furthermore, a certain portion of the sentence pairs
in ASSIN 2 was translated from existing English datasets into Portuguese. In this
way, we were not able to distinguish such pairs from those which were created
from scratch, as there are not any labels on the dataset itself that indicate this
feature. We translated the ASSIN 2 dataset into English through Google Cloud
Translation API6 under its default settings.

6 https://cloud.google.com/translate/docs/
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It should be noticed that we did not apply any preprocessing steps to the
datasets other than those required by the Transformer models themselves. We
also did not take any measures to modify or increase the quality of the translated
sentence pairs after they had been retrieved from the translation API.

5.2 Results

The Transformers (BERT and RoBERTa) were fine-tuned both on the standard
training and validation sets for ASSIN 2. After fine-tuning, they produced their
own predictions for each one of the available test sets. These predictions were
submitted to the standard evaluation script for the ASSIN datasets, both in
isolation and combined through two di↵erent ensemble techniques: averaging
and 5-fold stacking.

It can be seen on Table 1 that the best Pearson correlation for the STS
task has been achieved by combining the predictions from both Transformers
through an aritmetic mean, although 5-fold stacking achieved a mean squared
error considerably lower than any other of the evaluated approaches. For the
entailment task, RoBERTa singlehandedly performed better than either BERT
or any of the ensembles. However, 5-fold stacking achieved results pratically
equivalent to RoBERTa.

Table 1: Results for evaluation on the tasks provided by ASSIN 2. For the STS
task, the predictions were ranked by their Pearson correlation coe�cient (⇢) and
mean squared error (MSE) relative to the gold scores. For evaluation on the RTE
task, the predictions were ranked by their accuracy (Acc), Macro-F1 score (F1)
and Matthews correlation coe�cient (MCC). Arrows indicate whether lower (#)
or higher (") is better.

Model
Similarity Entailment

⇢ (") MSE (#) Acc (") F1 (") MCC (")

BERT-multilingual 0.75 1.20 0.8190 0.82 0.659

RoBERTa 0.81 0.77 0.8840 0.88 0.772

Ensemble
( averaging ) 0.83 0.91 0.8476 0.84 0.720

Ensemble
( stacking, 5-fold ) 0.78 0.59 0.8832 0.88 0.771

5.3 Discussion

Reimers et al. [15] demonstrates that the Pearson correlation coe�cient can be
misleading and especially ill-suited to predict the best STS system for natural
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language processing tasks. In plagiarism detection, for instance, the STS system
may receive documents that have been previously pre-filtered. In this way, it will
only analyze documents that score above a certain threshold. And for semantic
search, Reimers 7 mentions that, as Okapi BM25 has a lower false positive prob-
ability than BERT and other Transformer architectures, query results should be
pre-filtered through Okapi BM25 to build a clean candidate set, and then BERT
can be used to perform reranking among the selected candidates.

With these concerns in mind, we have measured both Pearson correlation
and the mean squared error individually for five distinct gold score intervals.

Regarding the mean squared error, in Figure 1 we can see that, while the per-
formance of BERT-multilingual linearly improves for higher gold scores, RoBERTa
performs exceptionally better than all other models for the lowest score range
between 1.0 and 1.4 . After this range, its performance suddenly decreases. And
after decreasing, it also starts to linearly improve.

As sentence pairs on the lowest gold score intervals are very di↵erent from
each other, one possible explanation is that they were able to maintain their high
degree of dissimilarity even after automatic translation. In this way, RoBERTa
was able to provide results closer to its performance for sentence pairs which
were originally written in English; and as expected, such results are consistently
better than what can be achieved through BERT-multilingual.

Although averaging performed slightly better than 5-fold stacking on the
lowest score range, 5-fold stacking was able to provide a mean squared error
lower than any other model on all other score ranges.

Regarding the Pearson correlation, it is interesting to notice that RoBERTa
provided results which were superior or otherwise competitive with all other
models except on the higher score interval between 4.5 and 5.0, and BERT-
multilingual has a performance inferior to all other models except on the same
higher score interval. Although 5-fold stacking failed to notice such complemen-
tary behavior, it was possible to achieve results competitive with both models
for all score ranges by simply averaging their predictions.

As we treated the RTE task as if it were a STS task with only two scores,
the results obtained by RoBERTa on this task can be explained by its ability
to accurately determine when two automatically translated sentence pairs are
totally dissimilar to each other, that is, when their entailment relationship is
equal to None. In other words, RoBERTa has a lower false positive probability
than BERT-multilingual or our evaluated ensemble approaches. As a result,
RoBERTa achieved not only high accuracy and Macro-F1 scores, but also a high
Matthews correlation coe�cient.

Therefore, for the RTE task, an ensemble will not be necessary, and we can
simply take the predictions produced by RoBERTa as our final result. However,
an ensemble made through 5-fold stacking is able to achieve equivalent results,
as it can recognize that BERT-multilingual performs consistently worse than
RoBERTa on this task, and thus it minimizes the weight given to the predictions
made by BERT-multilingual as much as possible.

7 https://github.com/huggingface/transformers/issues/876#issuecomment-536792338
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Fig. 1: We break down the dataset into five parts determined by the intervals in
which their gold scores are located. Then we calculate the Pearson correlation
and the mean squared error of all experiments listed on Table 1 separately for
each one of these intervals.
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6 Conclusions

We have discovered that, for the evaluated Portuguese RTE task, automatically
translating the dataset into English and then fine-tuning a large RoBERTa model
over the translated dataset can produce better results than BERT-multilingual
or monolingual approaches that rely only on the resources natively available for
the Portuguese language.

And although the same results could not be achieved in isolation by RoBERTa
on the STS task, state-of-the-art results in the Portuguese language for this task
can be achieved by combining the predictions made by BERT-multilingual and
RoBERTa through an adequate ensemble technique, which in some cases may
be as simple as taking the arithmetic mean of both predictions.

In spite of the simplicity of our approach, we have achieved the best results for
the RTE task on the ASSIN 2 workshop. Later on, we also found out that simply
taking the arithmetic mean of the predictions generated by BERT and RoBERTa
was able to surpass all the Pearson correlation scores which had been achieved
by the participants to the STS task. We did not perform any preprocessing
on the training data, either before or after automatic translation. We also did
not take into account any features other than the predictions generated by the
Transformer architectures as they have been implemented in standard libraries.

Therefore, we believe that there is room for significant improvements to our
results. For both tasks, it may be convenient to test more sophisticated tech-
niques for ensemble building [16] [19]. And although our research was limited to
the ASSIN 2 dataset, it may be interesting to extend the same experiments to
its first edition, ASSIN 1. We should also investigate which linguistic features
were easily learned by our models, and which ones were not.

For future experiments, new English models that reach the top positions on
the GLUE Benchmark Leaderboard8 for the STS-B and RTE tasks should be
considered, and these models may be combined or compared with Transformers
trained in Romance languages. For instance, experiments may be performed on
CamemBERT [12], with datasets automatically translated from Portuguese to
French.

However, as a long-term strategy, we should also consider solutions which
entirely avoid the inevitable limitations of machine translation, such as training
our own Transformer models exclusively for the Portuguese language.
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