
Grammars and a Random Generator for
Deterministic Chain Regular Expressions

Xinyu Chu1,2, Ping Lu3, and Haiming Chen1?

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences

{chuxy,chm}@ios.ac.cn
3 Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang

University, Beijing 100191, China
luping@buaa.edu.cn

Abstract. Deterministic regular expressions (DREs) are a core part of
XML Schema and widely used in other applications. There are context-
free grammars for DREs, which are not efficient for being used and also
lead to the problem of being unable to generate expressions of the given
length in an efficient manner. Deterministic chain regular expressions
(dCHAREs) are a very practical subclass of DREs. In many practical
situations, dCHAREs are more suitable than standard or deterministic
regular expressions. But dCHAREs do not have a simple syntax, which
puts a burden on the applications of these expressions. In this paper, we
propose derivation rules and give regular grammars for dCHAREs which
are more succinct than the grammars of DREs. Based on the grammars,
we further design an algorithm to randomly generate dCHAREs of the
given length, which fills the gap in the generation of DREs. Experimental
results demonstrate that our generator is efficient in terms of running
time and complexity.

Keywords: Deterministic Chain Regular Expressions · Regular Gram-
mars · Efficient Random Generation Algorithm

1 Introduction

1.1 Motivation

Deterministic regular expressions (DREs) and its subclasses are a core part of
XML Schema [33, 34] and widely used in other applications (e.g., [19, 23]). They
have been extensively studied in the literature [3, 7, 8, 10–12, 15, 17, 21, 24, 27–29,
31], also under the name of one-unambiguous regular expressions. But they used
to be a mystery for users because they were defined only by a semantic manner

? Corresponding author. Work supported by the National Natural Science Foundation
of China under Grant Nos. 61872339 and Nos. 61472405.
Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

49

for a long time. To solve this problem, Xu et al. [35] proposed a syntax for DREs,
which made DREs better understood and used more widely. But the grammars
describing the syntax of DREs are context-free grammars, which is not efficient
when the alphabet is large or the expression length is long and there remains
a problem on random generating DREs by their grammars, i.e., the generation
algorithm of [35] only guarantees that the length of a generated expression is not
longer than the given length, e.g. when you want to generate a DRE of length 10,
the expression it gives may be 9 or 8 in length. So it is necessary to put forward
more concise grammars, which can generate expressions of the given length.

Practical research shows that 79.54% of DREs in practice are deterministic
chain regular expressions (dCHAREs), which is one of the most practical sub-
classes of DREs [5, 22]. In some specific applications, dCHAREs can be more
suitable than DREs. But they are still a mystery to users, because they were de-
fined only by a semantic manner, which put a burden on the applications of these
expressions. Hence, it is necessary to study grammars for dCHAREs and their
applications. By considering dCHAREs, it is possible to have simpler grammars,
and give random generation algorithms which can generate expressions with the
given length, a challenge we consider in this paper.

1.2 Contributions
• We propose derivation rules and regular grammars for dCHAREs.
• Based on the grammars of dCHAREs, we design a generation algorithm,

which can randomly generate expressions of the given length.
• Compared to generation algorithms in [35], our generator performs better

with longer given lengths and larger alphabet sizes.
• We experimentally evaluate that our generation algorithm is efficient in

terms of running time and complexity.

1.3 Overview

We concentrate our attention on dCHAREs, which is proved to be a widely used
subclass of DREs in practice. In Section 3, we introduce the necessary definitions.
In Section 4, we discuss the structure properties of dCHAREs, based on which
we propose a derivation system and regular grammars for dCHAREs. Then we
design an algorithm to generate dCHAREs based on the grammars, which can
generate expressions exactly with the given length in Section 5. The analysis
and comparison experiments of our generation algorithm are in Section 6. We
summarized this paper in Section 7.

2 Related Work
Deterministic regular expressions and its subclasses. There has been a
lot of work to decide the determinism of regular expressions and its subclasses,
such as for standard regular expressions [7], for expressions with counting [11,
17, 20], or for expressions with interleaving [27]. There has been a lot of work on
inferring DREs, Bex et al. gave algorithms to learn deterministic k-occurrence
REs based on the Hidden Markov Model [4], Freydenberger and Kötzing [14] gave
linear time algorithms to infer subclasses of DREs. To study the practicability
of DREs and its subclasses, Li et al. [22] harvested a large-scale real data from

50 Xinyu Chu et al.

the Web, which indicates that dCHAREs is one of the most practical subclass of
DREs. Another problem is random generating expressions, on which we focused
in this paper.

Random generation. Randomly generating expressions find applications in
hardware and software testing, coding theory, bioinformatics. Hanford et al. [32]
and Denise et al. [13] separately proposed algorithms for generating sentences
randomly from context-free languages. Arnold and Sleep [1] considered the uni-
formity, which means that all expressions of the given length are generated by
the grammars equally likely, and presented an algorithm to generate balanced
parenthesis strings. Hickey et al. [18] also proposed methods based on parse tree
to uniformly generate strings in a context-free language. Bernardi et al. proposed
the first linear algorithm for random sampling from a regular language by a de-
terministic finite automaton [2]. Researches proposed several random generation
algorithms to improve either the time and space bounds [16, 25] or the prepro-
cessing [26]. Enumeration algorithms can be used as random generators [36], but
due to the large memory required by the maintenance of the whole grammar and
the information required by the generation, they are restricted when used for
random generation. Xu et al. [35] proposed a generation algorithm based on the
grammars of DREs, however, there are still problems unsolved in their generator
due to the production form and the large scale of grammars of DREs.

We consider to solve the random generation problem by a bottom-up algo-
rithm based on grammars of dCHAREs, by taking full advantage of the chain
structure and the information that the grammars take, our algorithm needs no
preprocessing and can fill a gap in [35], i.e., randomly generate dCHAREs exact-
ly equal to the given length and more efficient in the case of long given lengths
and large alphabet sizes.

3 Definitions

Let Σ be an alphabet of symbols. The set of finite words over Σ is denoted
by Σ∗. Note: ε represents the empty word, ∅ represents the empty set. For an
expression r over Σ, the language specified by r is denoted by L(r).

Definition 1. Regular Expressions (REs). A RE over Σ is ε or a ∈ Σ, or
the union r1|r2, the concatenation r1 · r2, the plus r+1 , the kleene star r∗1 or
the question mark r?1 for REs r1 and r2.

Definition 2. Simple Regular Expressions [5]. A base symbol is a RE a,
a?, or a∗ where a ∈ Σ, a factor is of the form e, e?, or e∗ where e is a disjunction
of base symbols. A simple regular expression is ε, ∅ or a sequence of factors.

To define deterministic regular expressions, we need some notations. For a reg-
ular expression we can mark symbols with subscripts such that in the marked
expression each marked symbol occurs only once. Without loss of generality,
we use the positions as the marked subscripts. For example, a marking of the
expression (a|b)+ab(a|b) is (a1|b2)+a3b4(a5|b6). The marking of an expression r
is denoted by r#. Accordingly, the result of dropping off the subscripts from a
marked expression r is denoted by rΨ . Then we have (r#)Ψ = r.

51Grammars and a Random Generator for Deterministic Chain Regular Expressions

Definition 3. Deterministic Regular Expressions (DREs) [8]. An ex-
pression r is deterministic if it satisfies the condition: for any two words uxv,
uyw ∈ L(r#) with |x| = |y| = 1, if x 6= y, then xΨ 6= yΨ holds. A regular
language is deterministic if it can be denoted by some deterministic expression.

Definition 4. Chain Regular Expressions (CHAREs). A CHARE is a
RE (Def. 1) of the form f1 · · · fn, where every fk (1 ≤ k ≤ n) is a factor of the
form e, e∗, e+ or e?. A base symbol is a RE a, a?, a+ or a∗ where a ∈ Σ, and
factor e is a disjunction of base symbols with same unary operators.

E.g., (c?)+ · (a+|b+)∗ · (a∗|b∗|c∗)+ is a CHARE while (ab|c)∗ and (a|b∗)+ · (c?|d?)
are not CHAREs because their structure does not conform to the definition.
Definition 5. Deterministic Chain Regular Expressions (dCHAREs).
A dCHARE is a CHARE (Def. 4) which is deterministic.
E.g., (a∗|b∗)+ ·(c)·(d+) is a dCHARE, (a∗|b∗)+ ·(a?|c?) is not a dCHARE because
it is not deterministic. Let (S, α, β) = (aα1 | · · · |aαn)β , which denotes a factor of a
dCHARE, where S = {a1, · · · , an}, 1 ≤ i ≤ n, ai ∈ Σ, ai 6= aj for i 6= j, n ≥ 1,
α, β ∈ {o,+, ?, ∗}. Denote ro = r.

Note that dCHAREs we defined here are different from the chain regular
expressions [6] which is a subclass of SOREs [6] in which each alphabet symbol
can occur at most once. The dCHAREs we defined support multiple occurrences
of alphabet symbols.
To construct the grammars, we define the following sets and the function λ:

First(r) = {a|aω ∈ L(r), a ∈ Σ,ω ∈ Σ∗}
followLast(r) = {b|νbω, ν ∈ L(r), ν 6= ε, νbω ∈ L(r), b ∈ Σ,ω ∈ Σ∗}
λ(r) = true, if ε ∈ L(r); λ(r) = false, otherwise

The First set and function λ for any expression can be computed as follows:
First(ε) = ∅; First(a) = {a}, a ∈ Σ
First(r|s) = First(r) ∪ First(s)

First(r · s) =

{
First(r) ∪ First(s) λ(r) = true

First(r) otherwise

F irst(r∗) = First(r+) = First(r?) = First(r)

λ(ε) = true; λ(a) = false, a ∈ Σ
λ(r|s) = λ(r) ∨ λ(s); λ(r · s) = λ(r) ∧ λ(s)

λ(r?) = λ(r∗) = true; λ(r+) = λ(r)
For REs, the followLast set can be computed as follows [11]:

followLast(ε) = followLast(a) = ∅, a ∈ Σ
followLast(r|s) = followLast(r) ∪ followLast(s)

followLast(r · s) =

{
followLast(r) ∪ First(s) ∪ followLast(s) λ(s) = true

followLast(s) otherwise

followLast(r∗) = followLast(r+) = followLast(r) ∪ First(r)

followLast(r?) = followLast(r)

4 Grammars for dCHAREs
In this section, we first exhibit a derivation system for characterizing and recog-
nizing dCHAREs. Then we give regular grammars for dCHAREs and propose
an algorithm to construct the grammars.

52 Xinyu Chu et al.

4.1 Derivation System for dCHAREs

We give the derivation system by exploiting the structure of dCHAREs. The
following lemmas can be easily obtained from Def. 3 and Def. 4.

Lemma 1 ([8, 10, 20]). Let E be a regular expression. E = E1·E2: If L(E) = ∅,
then E is deterministic. If L(E) 6= ∅ and ε ∈ L(E1), then E is deterministic iff
E1 and E2 are deterministic, First(E1)∩First(E2) = ∅, and followLast(E1)∩
First(E2) = ∅. If L(E) 6= ∅ and ε /∈ L(E1), then E is deterministic iff E1 and
E2 are deterministic, and followLast(E1) ∩ First(E2) = ∅.

Lemma 2. Let r = (S, α, β). Then First(r) = S. α ∈ {?, ∗} or β ∈ {?, ∗} iff
λ(r) = true.

Lemma 3. If r = (S1, α1, β1) · · · (Sn, αn, βn) is a dCHARE. When αn = o and
βn = o, then followLast(r) = ∅. When αn = + or βn = +, and αn, βn /∈ {?, ∗},
then followLast(r) = Sn.

Let |= r means the expression r is a dCHARE. A derivation rule is of the
form:

|= r1 · · · |= rn c1 · · · cm
|= r

which means if r1, · · · , rn are dCHAREs, and the conditions c1, · · · , cm hold,
then r is a dCHARE. We obtain the derivation system DC as follows:

(Fac) |= (S, α, β)

(SeqA)
|= r = (S1, α1, β1) · · · (Sm, αm, βm) (m ≥ 1) αm, βm = o

|= r · (S, α, β)
|= r = (S1, α1, β1) · · · (Sm, αm, βm) (m ≥ 1)

(SeqB)
(αm = + ∨ βm = +) ∧ (αm, βm /∈ {?, ∗}) Sm ∩ S = ∅

|= r · (S, α, β)
|= r = (S1, α1, β1) · · · (Sm, αm, βm) (m ≥ 1)

αt ∈ {?, ∗} ∨ βt ∈ {?, ∗} St ∩ S = ∅

(SeqC)
t = i, · · · ,m i = 1 ∨ (i > 1, αi−1, βi−1 = o)

|= r · (S, α, β)

|= r = (S1, α1, β1) · · · (Sm, αm, βm) (m ≥ 1)
(αi−1 = + ∨ βi−1 = +) ∧ (αi−1, βi−1 /∈ {?, ∗})

αt ∈ {?, ∗} ∨ βt ∈ {?, ∗}

(SeqD)
t = i, · · · ,m i > 1 Si−1 ∩ S = ∅ St ∩ S = ∅

|= r · (S, α, β)

According to those derivation steps, we can concatenate a factor behind a
dCHARE r to make r · (S, α, β) a new dCHARE.

Theorem 1. (Soundness and completeness) An expression r is a dCHARE iff
r is derivable from DC.

Proof. According to the chain structure of dCHAREs, lemma 1 guarantees that any
length of dCHAREs can be generated in the form of concatenating sub-expressions.
The rules in DC cover all candidate value of α and β. We say r is derivable if there is
a derivation tree in DC whose root is r. If r is derivable in DC, r is clearly a dCHARE
by the lemmas listed above. On the other hand, for a dCHARE r, we can construct a
derivation tree, which is isomorphic to the structure of r. Thus r is derivable in DC.
In conclusion, the derivation system DC is sound and complete. ut

DC can help users design dCHAREs. For example, letΣ = {1, 2, 3, 4, 5}. Suppose
the user has written the expression (1|2) · 3 · 4?. After analysis, it belongs to the
(SeqC) case, so the next factor can not contain the symbol ‘4’. The user can
follow this information to continue writing dCHAREs incrementally.

53Early Prediction of Test Case Verdict with Word Embeddings vs. Bag-of-Words

4.2 Grammars for dCHAREs
The grammars for dCHAREs can be constructed by simulating the computations
in the derivation system DC. To simplify the grammar, we define the function
fl for a dCHARE r = (S, α, β) · r1:

fl(r) =

{
S λ(r) = true

∅ otherwise

This function makes the representation of nonterminal more concise. Other-
wise, we have to use two instead of only one variable for the First set and the
λ function. This will be clear later. The function fl can be computed as follows:

fl((S, α, β)) =

{
S α ∈ {?, ∗} ∨ β ∈ {?, ∗}
∅ otherwise

fl(r · (S, α, β)) =

{
fl(r) α ∈ {?, ∗} ∨ β ∈ {?, ∗}
∅ otherwise

The correctness of the computation comes from the computation of λ and
First. Then we have the following property of fl:

Lemma 4. Let r be a dCHARE. If λ(r) = true, then we have First(r) = fl(r)∪
followLast(r).

Proof. For a dCHARE r = (S0, α0, β0) · (S1, α1, β1) · · · (Sn, αn, βn), when λ(r) = true:
when n = 1, fl(r) = S0, First(r) = S0, followlast(r) = ∅ or S0, then First(r) =
fl(r) ∪ followLast(r); when n ≥ 2, fl(r) = S0, First(r) = S0 ∪ Si, followlast(r) =⋃
Si, Si are the terminal sets which satisfies λ((S0, α0, β0)·(S1, α1, β1)···(Si−1, αi−1, βi−1)) =

true, then First(r) = fl(r)∪followLast(r). So we have First(r) = fl(r)∪followLast(r)
for that λ(r) = true. ut

Now consider how to construct grammars for dCHAREs. Let Σ = {a1, · · · , an}.
Suppose there is a finite set X of nonterminals. Each nonterminal is of the form
XR,F,α,β , where R,F ⊆ Σ, α, β ∈ {o,+, ?, ∗}. XR,F,α,β is intended to define
the language L(XR,F,α,β) = {r ∈ dCHAREs | followLast(r) = R, fl(r) = F,
r = r1·(S, α, β), r1 ∈ dCHAREs} for fixed R, F , α, and β. Denote the grammars
by Gc, the grammar rules of Gc are:

Fac:
X
R,F,α,β →

⋃
(S, α, β)

(α ∈ {+, ∗} ∨ β ∈ {+, ∗})→ (R = S)

(α /∈ {+, ∗} ∧ β /∈ {+, ∗})→ (R = ∅)
(α ∈ {?, ∗} ∨ β ∈ {?, ∗})→ (F = S)

(α /∈ {?, ∗} ∧ β /∈ {?, ∗})→ (F = ∅)

Seq:

X
R,F,α,β →

⋃
X
R1,F1,α1,β1 · (S, α, β)

(α ∈ {?, ∗} ∨ β ∈{?, ∗})→ (R = R1 ∪ S)
(α /∈ {?, ∗} ∧ β /∈ {?, ∗}∧(α = + ∨ β = +))→ (R = S)

(α = o ∧ β = o)→ (R = ∅)
(α ∈ {?, ∗} ∨ β ∈ {?, ∗})→ (F = F1)

(α /∈ {?, ∗} ∧ β /∈ {?, ∗})→ (F = ∅)
R1∩S = ∅
F1∩S = ∅

54 Xinyu Chu et al.

The conditions of these rules are used to check the determinism of dCHAREs.
Hence the productions for grammars of dCHAREs can be constructed as follows:
The productions in the Fac case are straightforward, the conditions in the rule
correspond to compute the followLast and fl sets. For the productions in the
Seq case, the first five conditions are used to compute followLast and fl sets,
the sixth condition checks that for the concatenation expression r = s·t, whether
followLast(s)∩ first(t) = ∅, the seventh condition checks that for the concate-
nation expression r = s · t, if λ(s) = true, then first(s)∩first(t) = ∅ must hold.
Thanks to fl, we only need to check whether fl(s) ∩ first(t) = ∅.

The form of productions in grammars Gc conform to the definition of left-
linear grammar [30], i.e., Gc are regular, then we come to the theorem:

Theorem 2. dCHAREs can be defined by regular grammars.

4.3 Scale of Grammars

Given an alphabet Σ, the terminals in grammars Gc are all the factors over Σ.
Let us consider the size of Gc. Since there are 2|Σ| different fl and followLast
sets, there are 2|Σ| · 2|Σ| · 4 · 4 = 22|Σ|+4 different nonterminals. Given a set S,
an α and a β, because all possible permutations of the symbols in S can form a
factor, there are |S|! possible factors. For example, given S = a, b, c, α = o and
β = ∗, we have the following factors: (a|b|c)∗, (a|c|b)∗, (b|a|c)∗, (b|c|a)∗, (c|a|b)∗
and (c|b|a)∗. Each production in the grammars uses at most two nonterminals
and one terminal, then the number of the productions is O(24|Σ| · 2|Σ| · |Σ|!) =
O(25|Σ| · |Σ|!).

Table 1. Number of Grammar productions of DREs and dCHAREs

|Σ| 1 2 3 4 5 6 7
|Gc| 32 576 3104 12480 44192 146496 467744
|Gd| 46 815 14904 240481 3520010 48369939 638241628

For a nonterminal XR,F,α,β , we call it is useless if there not exists dCHAREs
r such that XR,F,α,β =⇒∗ r. For a production in grammars of dCHAREs, if it
contains useless nonterminal, the production is useless. The useless productions
accounts for a large proportion in grammars of DREs [35], but the grammars of
dCHAREs directly produce the useful productions according to DC. To verify
the conciseness of dCHAREs grammars, we compared the number of productions
in grammars of DREs (Gd) and grammars of dCHAREs (Gc) in Table 1. Result
shows that Gc are smaller in order of magnitude than Gd.

5 Random Generation Algorithm

This section shows how to use the grammars to randomly generate dCHAREs
whose length is exactly equal to the given value. Considering the chain struc-
ture of dCHAREs, each chain factor has two nested unary operators and the
inner operators are identical, besides, the right side of the productions are a
nonterminal connected to a factor, so we adopt a bottom-up manner to generate
dCHAREs.

The generation algorithm is shown in Algorithm 2, which takes an alphabet
Σ and a length N as input, returns a dCHARE. The variables have the following

55Early Prediction of Test Case Verdict with Word Embeddings vs. Bag-of-Words

meaning: S for the list of symbols in each factor, divide records the partition of
N , i,e. the length of each factor, termin records random symbols of the current
factor. R,F,A,B stand for the set R,F, α, β of nonterminals respectively, and
unary operators α, β ∈ {?, ∗,+, o}. ranDivide(N, |Σ|) randomly writes N as a
sum of positive integers like integer partition [9], but each integer is limited to
no more than the alphabet size |Σ|, and the order of integers is considered (line
2). That ensures the length of the dCHARE we generate is equal to N and the
correctness of the generation algorithm. ranSample(A,n) randomly chooses n
different elements from A (line 4, 11 and 15). The generator produces the left-
most factor according to the value of α, β, S and Fac productions, calculate R
and F by grammar rules to obtain the nonterminals and productions (line 7),
then generate the rest factors from left to right, based on Seq and the terminals
that has been generated, generating the dCHARE at the same time of ran-
domly selecting grammar productions(line 8-20). If the grammatical restriction
interrupts a generation process, the algorithm will randomly re-divide N then
generate a new dCHARE (re-generate, line 22). Experiment shows that when
N ≤ 6|Σ|, the success rate of generate one dCHARE without re-generate can
reach to 100%, in other cases, the algorithm can also terminate in a limited time
and generate a dCHARE, so the finiteness and effectiveness of the algorithm can
be guaranteed.

Algorithm 1: ranDivide

Input: a positive integer N and the upper bound of each portion M
Output: a random divide list of N

1 res = []; current, now = 0;
2 while current < N do
3 res.append(now)
4 now = a random integer range from 1 to M
5 current+ = now
6 current− = now; res.append(N − current)
7 return res

Example: input Σ = {a, b, c}, N = 5, the output of Algorithm 2 is (S,A,B),
where S = [[c], [b, a], [c], [a]], A = [o, o, o,+], B = [+, ∗,+, ∗]. So the dCHARE
generated is (c)+ · (b|a)∗ · (c)+ · (a+)∗. Grammar production used in the deriva-
tion are: X{c},∅,o,+ → (co)+, X{a,b,c},∅,o,∗ → X{c},∅,o,+ · (bo|ao)∗, X{c},∅,o,+ →
X{a,b,c},∅,o,∗ · (co)+, X{a,c},∅,+,∗ → X{c},∅,o,+ · (a+)∗.

Theorem 3. Complexity of our generation algorithm is O(|Σ|2 log2(N)) in time and

O(|Σ| log(N)) in space.
Proof. Unlike the classical recursive method, there is no preprocessing. The time of
functions append is O(1), and we randomly choose an integer in O(1) time, so the
time complexity of Algorithm 1 is O(log(N)). The time complexities of calculating the
subtraction and union set are O(|Σ|) and O(|Ri−1| + |Si|) = O(|Σ|). Si is a random
list (|Si| = divide[i]) generated from the candidate symbol set SC, which is a subset
of Σ, so the time complexity of generating S is O(|SCi|) ∗ O(|Σ|) ∗ O(len(divide)) =
O(|Σ|2 log(N)). Then the time of generating one factor is O(|Σ|2 log(N)) +O(|Σ|), so
the time complexity of Algorithm 2 isO(log(N))∗O(|Σ|2 log(N)+|Σ|)= O(|Σ|2 log2(N)).
Counting the listed variables, we obtain the space complexity is O(|Σ| log(N)). ut

56 Xinyu Chu et al.

Algorithm 2: Random Generate dCHAREs

Input: an alphabet Σ, a length N
Output: a dCHARE of length N

1 divide, S,R, F,A,B = []; is oo, flag = true
2 divide = ranDivide(N, |Σ|)
3 A[0], B[0] = randomly chooses two operators from {?, ∗,+, o}
4 termin = ranSample(Σ, divide[0]); S[0] = termin
5 if (A[0], B[0]) = (o, o) then
6 is oo = true
7 Assign S[0] or ∅ to R[0] and F [0] according to Fac of Gc
8 for i ∈ {1, · · · , |divide| − 1} do
9 A[i], B[i] = randomly chooses two operators from {?, ∗,+, o}

10 if is oo = false then
11 termin = ranSample(Σ, divide[i])

12 else
13 if divide[i] > |Σ| − |S[i− 1]| then
14 flag = false; break

15 termin = ranSample(Σ − S[i− 1], divide[i])

16 S[i] = termin
17 if (A[i], B[i]) = (o, o) then
18 is oo = true
19 else
20 Calculate R[i] and F [i] according to Seq of Gc

21 if flag = false then
22 Random Generate dCHAREs(N,Σ)

23 else
24 return (S,A,B)

6 Experiments

6.1 Constructing Grammars for dCHAREs

Table 2 shows the time of constructing grammars with small alphabets, where
|Gc| denotes the number of productions in the grammars Gc, Time(ms) and
Avg T (µs) denote the constructing time for grammars and the average time
for each production respectively. Although grammars can be constructed easily
for small alphabets, the result shows that the construction time is exponential
in |Σ|. This is consistent with the number of productions given in Section 4.3.
The average time for constructing one production of grammars is shorter than 1
µs, which enables us to efficiently generate dCHAREs by only constructing the
productions when they are needed.

6.2 Randomly Generating Expressions with the Given Length

In this section, we present some experiments to evaluate our random generation
algorithm for dCHAREs.

57Early Prediction of Test Case Verdict with Word Embeddings vs. Bag-of-Words

Table 2. Grammars construction
|Σ| |Gc| Time(ms) Avg T (µs)
1 32 0.075 1.219
2 576 0.425 0.518
3 3104 1.358 0.361
4 12480 7.096 0.407
5 44192 97.223 1.012
6 146496 382.624 1.094
7 467744 1030.292 1.076
8 1460160 3597.424 1.232
9 4494752 24703.156 1.374
10 13713216 12944.305 1.555

5
10

10
200

1

2

|Σ|
N

T
im

e(
m
s)

Fig. 1. Generation time on various |Σ|, N

We conduct experiments on grammars with different alphabet sizes (3 ≤
|Σ| ≤ 10) to generate dCHAREs with different lengths (1 ≤ N ≤ 22). Fig. 1
exhibits the average time of generating one dCHARE for the given N and Σ, the
generation time is less than 2 ms which is acceptable in practice. It also implies
that if the user requires a short generation time, the relative value of |Σ| and N
should be taken into account.

2 4 6 8 10 12 14 16 18 20

0

10

20

30

Expression length (N)

T
im

e
(m
s)

Xu’s
Ours

Fig. 2. Comparison of generation time

Our generator is more efficient and prac-
tical comparing with algorithm in [35]. The
comparison on average time of generating
one expression with |Σ| = 20 is shown in
Fig. 2. The size of the grammars supported
by our algorithm is much larger than that
of Xu et al., because the running time of
their algorithm increases rapidly with the
increase of |Σ|.

Table 3. Generation time on large
|Σ|,N

|Σ|

Time(ms) N
100 200 300 500

50 0.783 1.342 8.646 244.82

100 0.127 0.817 1.148 40.55

200 0.165 0.266 0.285 6.379

The largest |Σ| given in [35] is 27, which
takes an average of 58.3 s to generate one ex-
pression with N ≤ 500. We would also like to
see how our algorithm performs when gener-
ating long dCHAREs from large grammars.
So we respectively generate 100 dCHAREs
with expressions length (N) equals 100, 200,
300, 500 from grammars whose alphabet size
(|Σ|) equals 50, 100, 200. Table 3 shows the average time of generating a d-
CHARE.

7 Conclusion

In this paper, we have given regular grammars for dCHAREs. We constructed
the grammars, then designed a random generator for dCHAREs which solved
the problem of randomly generate expressions of the given length in [35]. With
the grammars and the generator for dCHAREs, a series of problems can be
solved concisely. For instance, dCHAREs defined in this paper had no inference
algorithms before and can be inferred based on the grammars we proposed.
On the other hand, we can generate a large amount of expressions randomly
to be used as input to various test programs. The grammars and generator
can also help to determine whether a regular expression can be converted to

58 Xinyu Chu et al.

dCHAREs (see example in Sec 5). Since the grammars we proposed are regular,
our generator can be extended to other subclasses that can be expressed by
regular grammars.

Future work. (1) Optimizing the random generation process based on the dis-
tribution parameters of generated expressions. The purpose of the optimization
is to approximate the randomly generated expression to a uniform distribution.
(2) Other applications of the grammars. For example, further develop a tool to
help users writing dCHAREs.

References

1. Arnold, D.B., Sleep, M.R.: Uniform random generation of balanced parenthesis
strings. ACM Trans Programming Languages & Systems 2(1), 122–128 (1980)

2. Bernardi, O.: A linear algorithm for the random sampling from regular languages.
Algorithmica 62(1-2), 130–145 (2012)

3. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless
handling of nondeterministic regular expressions. In: ACM Sigmod International
Conference on Management of Data (2009)

4. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular
expressions for the inference of schemas from XML data. ACM Transactions on
the Web 4(4), 1–32 (2010)

5. Bex, G.J., Neven, F., den Bussche, J.V.: DTDs versus XML Schema: a practical
study. WebDB pp. 79–84 (2004)

6. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: International Conference on Very Large Data Bases (2006)

7. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

8. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion & Computation 140(2), 229–253 (1998)

9. Brylawski, T.: The lattice of integer partitions. Discrete Mathematics 6(3), 201–
219 (1973)

10. Chen, H., Lu, P.: Assisting the design of XML Schema: Diagnosing nondetermin-
istic content models. In: Asia-pacific Web Conference on Web Technologies & Ap-
plications (2011)

11. Chen, H., Lu, P.: Checking determinism of regular expressions with counting. In-
formation & Computation 241(C), 302–320 (2015)

12. Czerwinski, W., David, C., Losemann, K., Martens, W.: Deciding definability by
deterministic regular expressions. Journal of Computer and System Sciences

13. Denise, A., Roques, O., Termier, M.: Random generation of words of context-free
languages according to the frequencies of letters (2000)

14. Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions
and DTDs. pp. 1114–1158 (2013)

15. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak
versus strong determinism. Siam Journal on Computing 41(1), 160–190 (2012)

16. Gore, V., Jerrum, M., Kannan, S., Sweedyk, Z., Mahaney, S.: A quasi-polynomial-
time algorithm for sampling words from a context-free language. Information &
Computation 134(1), 59–74 (1997)

17. Groz, B., Maneth, S.: Efficient testing and matching of deterministic regular ex-
pressions. Journal of Computer & System Sciences 89 (2017)

59Early Prediction of Test Case Verdict with Word Embeddings vs. Bag-of-Words

18. Hickey, T.J., Cohen, J.: Uniform Random Generation of Strings in a Context-Free
Language. Urban Public Economics Review 5(1), 37–61 (2006)

19. Huang, X., Bao, Z., Davidson, S.B., Milo, T., Yuan, X.: Answering regular path
queries on workflow provenance. In: IEEE International Conference on Data En-
gineering (2015)

20. Kilpeläinen, P.: Checking determinism of XML Schema content models in optimal
time. Information Systems 36(3), 596–617 (2011)

21. Latte, M., Niewerth, M.: Definability by weakly deterministic regular expressions
with counters is decidable (2015)

22. Li, Y., Chu, X., Mou, X., Dong, C., Chen, H.: Practical study of deterministic
regular expressions from large-scale XML and Schema data (2018)

23. Losemann, K., Martens, W.: The complexity of regular expressions and property
paths in SPARQL. ACM Transactions on Database Systems 38(4), 24 (2013)

24. Losemann, K., Martens, W., Niewerth, M.: Closure properties and descriptional
complexity of DREs. Theoretical Computer Science 627, 54–70 (2016)

25. Mairson, H.G.: Generating words in a context-free language uniformly at random.
Information Processing Letters 49(2), 95–99 (1994)

26. McKenzie, B.: Generating strings at random from a context free grammar. Tech-
nical Report TR-COSC 10/97. Department of Computer Science, University of
Canterbury, Christchurch, New Zealand (1997)

27. Peng, F., Chen, H., Mou, X.: Deterministic regular expressions with interleaving
(2015)

28. Ping, L., Bremer, J., Chen, H.: Deciding determinism of regular languages (2015)
29. Ping, L., Peng, F., Chen, H., Zheng, L.: Deciding determinism of unary languages.

Information & Computation 245(C), 181–196 (2015)
30. Rozenberg, G., Salomaa, A.: Handbook of formal languages, vol. 1: word, language,

grammar (1997)
31. Sperberg-McQueen, C.M.: Notes on finite state automata with counters. https:

//www.w3.org/XML/2004/05/msm-cfa.html, 20 May 2004
32. V. Hanford, K.: Automatic generation of test cases. IBM Systems Journal 9, 242

– 257 (1970). https://doi.org/10.1147/sj.94.0242
33. W3C: Extensible markup language (XML) 1.1. http://www.w3.org/TR/xml11/,

29 September 2006
34. W3C: Unique Particle Attribution. https://www.w3.org/wiki/

UniqueParticleAttribution, 27 September 2005
35. Xu, Z., Lu, P., Chen, H.: Towards an effective syntax and a generator for determin-

istic standard regular expressions (2018). https://doi.org/10.1093/comjnl/bxy110,
https://dx.doi.org/10.1093/comjnl/bxy110

36. Xu, Z., Zheng, L., Chen, H.: A toolkit for generating sentences from context-free
grammars. In: IEEE International Conference on Software Engineering & Formal
Methods (2010)

60 Xinyu Chu et al.

	1
	paper1
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	9
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	10
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	11
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	12
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	13
	paper2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	14
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	15
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	16
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	17
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	18
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	19
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	20
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	21
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	22
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	23
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	24
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	25
	paper3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	26
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	27
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	28
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	29
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	30
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	31
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	32
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	33
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	34
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	35
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	36
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	37
	paper4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	49
	paper5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	50
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	51
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	52
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	53
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	54
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	55
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	56
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	57
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	58
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	59
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	60
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	61
	paper6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	62
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	63
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	64
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	65
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	66
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	67
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	68
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	69
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	70
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	71
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	72
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	73
	paper7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	74
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	75
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	76
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	77
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	78
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	79
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	80
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	81
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	82
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	83
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	84
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	85
	paper8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	86
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	87
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	88
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	89
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	90
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	91
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	92
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	93
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	94
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	95
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	96
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	97
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	98
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	99
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	100
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	101
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	102
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	103
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	104
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	105
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	106
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	107
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	108
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	109
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	110
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	111
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	112
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	113
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	114
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	115
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	116
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	117
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	118
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	119
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	121
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	122
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	123
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	124
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	125
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	126
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	127
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	128
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	129
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	130
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	131
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	132
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

