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Abstract

With the widespread integration of AI in everyday and criti-
cal technologies, it seems inevitable to witness increasing in-
stances of failure in AI systems. In such cases, there arises a
need for technical investigations that produce legally accept-
able and scientifically indisputable findings and conclusions
on the causes of such failures. Inspired by the domain of cy-
ber forensics, this paper introduces the need for the estab-
lishment of AI Forensics as a new discipline under AI safety.
Furthermore, we propose a taxonomy of the subfields under
this discipline, and present a discussion on the foundational
challenges that lay ahead of this new research area.

Introduction

Recent advances in Artificial Intelligence (AI) have given
rise to the rapidly growing adoption of such techniques by
a vast array of industries and technologies. The penetration
of AI in our day-to-day lives is easily observed in every-
day technologies such as advertisement and road navigation
(e.g., Google Maps), as well as critical sectors such as cyber-
security (Li 2018), healthcare (Jiang et al. 2017), and smart
cities (McKee et al. 2018). However, the growing complex-
ity of AI techniques renders the assurance and verification of
safety and reliability of such systems difficult (Yampolskiy
2018). Therefore, it is not surprising to observe the growing
frequency of reported failures in AI-enabled systems (e.g.,
(Yampolskiy and Spellchecker 2016)).

In response, the evolving field of AI safety (Amodei et al.
2016) aims to tackle the problem of reliability and safety
in AI-enabled systems. The resulting body of work to date
is largely focused on the prevention of unsafe behavior in
current and future AI technologies. However, the rapid pen-
etration of AI into critical technologies has greatly outpaced
the research efforts of the AI safety community. Hence, an
increase in the frequency of failures in deployed AI seems
inevitable. In the event of such failures in critical systems,
it becomes necessary to investigate the causes and sequence
of events leading to the failure. Besides the analysis of un-
derlying technical deficiencies, such investigations will need
to determine a variety of other aspects, including: whether
the failure has been the result of malicious actions, which
party is liable for the damages caused by the failure, and
whether the failure could have been prevented. Furthermore,
interested parties such as law enforcement and insurance

providers may require this investigation to result in legally
acceptable and indisputable findings and conclusions.

Similar needs in the domain of computer safety and secu-
rity have given rise to the field of Cyber Forensics. Digital
Forensics, also known as Cyber Forensics, revolves around
the scientific and legal extraction of digital evidence. This
field is multidisciplinary and involves computing, law, crim-
inology, psychology and other disciplines. At the core of
the domain, however, is the Acquisition, Authentication and
Analysis (AAA) of digital evidence.

Inspired by this analogue, we argue for the need to estab-
lish the formalism of AI Forensics as a new discipline under
AI safety. This formalism will aim to develop the tools, tech-
niques, and protocols for the forensic analysis of AI failures.
Accordingly, this paper makes the following contributions:

• We offer the first working definition of AI Forensics.

• We conceptualize the first formal attempt of the AI Foren-
sics domain, and propose a taxonomy for the correspond-
ing types and sources of evidence.

• We enumerate a number of notable challenges in the do-
main of AI Forensics.

Related Work
In recent years, there has been a growing interest in failure
detection and analysis techniques for algorithmic decision
making(Goodman and Flaxman 2016). This is partly due to
the European Union’s General Data Protection Regulations
(GDPR), which requires the explainability of consequential
decisions made by algorithms. Similarly, the research on Ex-
plainable AI (Samek, Wiegand, and Müller 2017) aims to
create tools and techniques that enable the explainability of
black-box models such as deep neural networks. However,
current state of the art in the analysis of failures in AI, and in
particular machine learning models, is largely focused on the
technical diagnosis and troubleshooting of design and train-
ing issues (e.g., (Nushi, Kamar, and Horvitz 2018)). Hence,
there remains a gap with regards to tools and techniques that
enable the forensic analysis of failures in AI-enabled sys-
tems.

Digital Forensics and Digital Evidence
Digital forensics is defined as “The use of scientifically
derived and proven methods toward the preservation, col-
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lection, validation, identification, analysis, interpretation,
documentation and presentation of digital evidence derived
from digital sources for the purpose of facilitating or fur-
thering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be dis-
ruptive to planned operations” (Palmer 2001). An important
component of digital evidence is its admissibility to the court
of law.

The admissibility of evidence was mostly dominated by
what is known as the Frye test that articulated expert scien-
tific evidence is admissible only if the scientific community
generally accepts it. Since 1993, courts in the United States
have adopted Rule 702 of the federal rules of evidence, re-
sulting in what many refer to as the Daubert process. This
process comprises of four major guidelines (Farrell 1993):

1. Testing: Can and has the procedure been tested?

2. Error Rate: Is there a known error rate of the procedure?

3. Publication: Has the procedure been published and sub-
ject to peer review?

4. Acceptance: Is the procedure generally accepted in the
relevant scientific community?

Digital forensics has made strides by exploring areas such
as disk forensics (Garfinkel 2009), memory forensics (Ligh
et al. 2014), network forensics (Karpisek, Baggili, and Bre-
itinger 2015), cloud forensics (Ruan et al. 2013), artifact
forensics (Grajeda et al. 2018), blockchain storage and cryp-
tocurrency forensics (Ricci, Baggili, and Breitinger 2019),
social media forensics (Al-khateeb et al. 2016), authorship
attribution (Mohan, Baggili, and Rogers 2010), and mobile
forensics (Baggili et al. 2015).

The aforementioned forensic areas also benefit from AI
techniques, as process automation in digital forensics is of
importance given the volume, variety and velocity produc-

tion of data.While the opportunity for AI Forensics has been
recently noted by experts (Luciano et al. 2018), at the time
of writing this work, the domain was ill-defined.

The Landscape of AI Forensics

We view the scope of AI Forensics as a subfield of digi-
tal forensics, defined as the scientific and legal tools, tech-
niques, and protocols for the extraction, collection, analysis,
and reporting of digital evidence pertaining to failures in AI-
enabled systems. In compliance with the Daubert process,
AI Forensics provides a framework to enable the systematic
and scientific resolution of such questions as:

• What were the sequence of events and conditions that led
to the failure?

• Did the failure result from malicious actions?

• Which party or parties is responsible for the failure?

• Would it have been possible to prevent the failure?

• Where did the failures take place?

The core of any forensic investigation is the collection and
extraction of evidence. To this end, we introduce a classifica-
tion of the various types evidence that can be of relevance to
the investigation. Furthermore, we identify possible sources
of evidence for each of the enumerated types.

AI Training Forensics

In forensic investigations of machine learning systems, a
necessary step is to identify potential intentional or unin-
tentional faults introduced during the training of the system.
Such faults may stem from any of the components involved
in training, as detailed below:



Training Process Forensics: The training process com-
prises of the optimization algorithm and its corresponding
hyperparameters. A major cause of AI failures is the mis-
specification of the objective or cost function, which may
result in behaviors that are misaligned with the goals of the
designer (Arnold, Kasenberg, and Scheutz 2017). Further-
more, design choices such as exploration techniques in rein-
forcement learning agents (Behzadan and Munir 2018) and
regularization techniques may result in brittle behaviors that
fail to adapt to distributional shifts in their settings of de-
ployment (Papernot et al. 2018). Therefore, such parameters
and choices constitute valuable forensic evidence.

Dataset Forensics: The dataset used in the training of a
machine learning model may be of inconsistent or unrep-
resentative samples, thus resulting in a model that is not
compatible with the conditions of its deployment settings.
Furthermore, the training dataset may be subject to inten-
tional manipulations (e.g., data poisoning attacks (Papernot
et al. 2018) and backdoor injections (Chen et al. 2017)).
Therefore, forensic investigations can benefit from access to
the dataset and knowledge of its compilation methodology.
Also, access to the modification history of the dataset can
help with identifying intentional manipulations, as well as
the responsible parties.

Environment Forensics: The analogue of training data
for reinforcement learning agents is the training environ-
ment. Similar to the case of training data, unrepresentative
or manipulated environments may result in faulty behavior
and failures (e.g., (Behzadan, Yampolskiy, and Munir 2018)
and (Behzadan and Hsu 2019)). Hence, access to the training
environment and its modification history can prove useful in
forensic investigations

AI Substrate Forensics

Substrate refers to the hardware and software platform that
hosts the AI system. Forensic investigations of the AI sub-
strate is essentially the domain of Digital Forensics. How-
ever, there are certain aspects of AI substrates that may give
rise to unique circumstances. For instance, random bit-flips
in the processor or memory due to cosmic rays has been
shown to result in potentionally significant failures (Santoso
and Jeon 2019). Furthermore, in cyber-physical AI systems,
impaired or manipulated actuation of mechanical compo-
nents (e.g., robotic locomotion) may result in misrepresen-
tations of states and consequences of actions (Behzadan and
Munir 2018). Main sources of forensic evidence in the AI
substrate include the disk and memory, the network compo-
nent, as well as the conditions of sensors and actuators in the
cyber-physical settings.

AI Application Forensics

AI is often deployed as a component of an application sys-
tem. For instance, cloud-based cognitive services provide
Application Programming Interfaces (APIs) to enable the in-
tegration of an AI service in software products. Forensic ev-
idence collected from the usage logs of such APIs may indi-
cate manipulation attempts, as well as failures in correct data
cleaning and processing of queries. Furthermore, analysis of

artefacts such as system resource utilization logs, authen-
tication logs, and file system logs may also provide useful
information on anomalous behavior and its causes.

AI Model Forensics

Deployed machine learning models may result in failures
that are independent of the aforementioned sources. For in-
stance, original models may have been manipulated or re-
placed at some point in the machine learning supply chain.
This type of malicious behavior may manifest in the form
of backdoored models (e.g., (Chen et al. 2017)), corrupted
models (e.g., poisoning of malware classification (Chen et
al. 2018b)), or intentionally malicious models. While the
domain of explainable AI offers an array of tools that may
prove helpful in the analysis of the decision-making process
in such models, a comprehensive forensic investigation re-
quires further evidence which may be obtained from alter-
native sources, as discussed below:

Model Authentication Forensics: The aim of such evi-
dence is to enable the verification of the authenticity of the
model under investigation. Recent advances in watermark-
ing techniques for machine learning models (Behzadan and
Hsu 2019; Zhang et al. 2018) provide the means for di-
rect authentication of models. However, such approaches are
yet to be commonly adopted. Furthermore, watermarks may
also be prone to tampering and forging. Hence, alternative
evidence such as software-level hashing techniques can pro-
vide a more reliable alternative.

Model Identification / Extraction Forensics: If the
model under investigation is a blackbox (i.e., model pa-
rameters and architecture are unknown), techniques such as
model inversion and extraction (Tramèr et al. 2016) may
provide the means for replicating its behavior for further
testing and analysis. However, due to the approximate na-
ture of such replicas, there remains the need for techniques
that enable the quantification of uncertainty to maintain the
legal soundness of the resulting forensic analyses.

Model Ballistics Forensics: In the general domain of
Forensics, ballistics refers to the analysis and identification
of the type and owner of a weapon used in a shooting inci-
dent. Similarly, in the forensic investigation of suspicious or
malicious models, it is of importance to determine the type
and creators (tools and individuals) of the model.

Model Performance Forensics Recording the values of
internal metrics and variables in the model may provide a
detailed insight into the inner workings of the model. For
instance, (Chen et al. 2018a) demonstrate that the analy-
sis of activation values in deep learning models facilitates
the detection of hidden backdoors. Also, higher-level mea-
surements of model internals, such as state-action value esti-
mates of reinforcement learning agents, and the multi-class
probability distribution of classifiers, may provide useful ev-
idence on the origins of failures.

Model Malware Forensics As mentioned before, ma-
chine learning models can be infected with backdoors and
trigger-activated policies, or have been intentionally trained



to act maliciously. An AI forensic investigation needs to de-
tect and establish the existence of such malware, and pro-
vide the means to determine their malicious intent. Inspired
the sandboxing techniques of computer malware analysis
(Greamo and Ghosh 2011), a preliminary source of forensic
evidence in such cases is to replicate the conditions in sim-
ulation or a controlled environment to observe and analyze
the behavioral dynamics of the model under investigation.

Challenges

Unexplainability of AI

Sound and indisputable root-cause analysis of failures in AI
may require transparent and accurate interpretations of the
decision-making process which resulted in undesired behav-
ior. However, the research on the explainability of complex
AI systems is still at its early stages, and the state of the art is
far from solving the problem of explainability. Furthermore,
some recent literature (e.g., (Yampolskiy 2019)) argue that
as the AI technology and capabilities advance over time, it
may become more difficult, or even impossible for AI sys-
tems to be explainable. In such circumstances, simpler ab-
stractions of the decision-making process may enhance the
forensic analysis of such failures. For instance, (Behzadan,
Munir, and Yampolskiy 2018) propose a psychopathological
abstraction for complex AI safety problems. Similar abstrac-
tions may be required to enable accurate forensic analysis of
advanced AI.

AI Anti-Forensics

In the domain of digital forensics, criminals constantly adapt
to the state of the technology, and utilize techniques such as
decoys, false evidence, or forensic cleaning to impede the
forensic investigation. It is likely that such anti-forensics
techniques may also be invented and adopted by criminals
to manipulate AI forensic investigations. Proactive identi-
fication of such techniques and development of mitigating
solutions will thus become an increasingly important area
of research in this domain. A recent anti-forensics general
taxonomy was devised by researchers (Conlan, Baggili, and
Breitinger 2016), yet, AI anti-forensics was not included in
the taxonomy. While this is a challenge, it also presents a
ripe opportunity for researchers.

Disconnect Between the Cyber Forensics and AI
Communities

One of the biggest challenges we face is the disconnect be-
tween the AI Safety and Cyber Forensics communities. Sci-
entists from those two domains are not working together,
thus, the domain of AI Forensics has not been conceived
and is ripe for future work. This disconnect was apparent in
a recent survey study, where the majority of digital forensic
practitioners (67%) (disagreed, agreed or were neutral) on
their competency in Data Science (Sanchez et al. 2019).

Conclusion

We argued that the widespread integration of AI in every-
day and critical technologies is bound to result in increased

instances of failure, which will require technical investiga-
tions that produce legally acceptable and scientifically indis-
putable findings and conclusions. Inspired by the domain of
cyber forensics, we thus introduced the need for the estab-
lishment of AI forensics as a new discipline under AI safety.
Furthermore, we proposed a taxonomy of the subfields un-
der this discipline, and presented a discussion on the foun-
dational challenges that lay ahead of this new research area.
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