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Abstract

Embedding simulation models developed during the design
of a platform opens a lot of potential new functionalities
but requires additional certification. Usually, these models re-
quire too much computing power, take too much time to run
so we need to build an approximation of these models that can
be compatible with operational constraints, hardware con-
straints, and real-time constraints. Also, we need to prove that
the decisions made by the system using the surrogate model
instead of the reference one will be safe. The confidence in
its safety has to be demonstrated to certification authorities.
In cases where safety can be ensured by systematically over-
estimating the reference model, we propose different prob-
abilistic safety bounds that we apply on a braking distance
use-case. We also derive a new loss function suited for shifted
surrogates and study the influence of the different confidence
parameters on the trade-off between the safety and accuracy
of the surrogate models. Here are the main contributions and
the outline of this paper:

• We define safety as the fact that a surrogate model should
over-estimate the reference model with high probability.

• We use Bernstein-type deviation inequalities to estimate
the probability of under-estimating a reference model with
a surrogate model.

• We show how to shift a surrogate to guarantee safeness
with high probability.

• Since shifting impacts the performance of our surro-
gate, we derive a new regression loss function—that we
call SMSE—in order to build surrogates with safeness-
promoting constraints.

Introduction

Deep Learning has undoubtedly provided tremendous
progress in many machine learning tasks. More specifically,
it has improved the state of the art in regression problems
(Lathuilière et al. 2019) and demonstrated, in our industrial
applications, that it achieved better accuracy. However, one
limitation that restrains their massive industrialization nowa-
days for safety-critical tasks is mainly due to the limited con-
fidence in their prediction. Indeed, neural networks usually
output only point prediction without any calibrated estimate
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of their uncertainty. This is highly problematic in high stakes
scenarios. When it comes to the aircraft industry, aeronauti-
cal certification authorities have already identified the need
for AI to refrain from responding rather than transmitting er-
roneous information (FAA 2016). Consequently, uncertainty
assessment and prediction confidence intervals will become
necessary in a certification process of AI for critical systems.
Indeed, the error of design that always comes within any
machine learning model is a novelty into the certification
process and thus not taken into account within the DO-178c
(Hilderman 2014). Eventually, it implies that these uncer-
tainties will have to be calibrated and quantified. In prac-
tice, the uncertainty may result from several sources, as also
stated in the taxonomy of (De Rocquigny et al. 2008) and
(Der Kiureghian and Ditlevsen 2009).

In this work, we are interested in quantifying the uncer-
tainty of a neural network surrogate as a proxy for a phys-
ical simulator. Indeed, in many industries, including aero-
nautics, numerical simulators have been developed to model
physical phenomena inherent in their systems (Biannic et
al. 2016). As these models are based on physical equations,
whose relevancy is asserted by scientific experts, their qual-
ification will have or can be carried out without any issue.
Since their computational costs and running time prevent
us from embedding them on board, the use of these sim-
ulators in the aeronautical field remains mainly limited to
the development and design phase of the aircraft. Thanks to
the current success of deep neural networks, previous works
have already investigated neural network based surrogates
for approximating numerical simulators (Jian et al. 2017;
Sudakov et al. 2019).

We are convinced that these surrogates position us in a
very favorable framework towards a certification process.
First of all, we should not demonstrate the ability of our
surrogate to model a real phenomenon, but its quality to ap-
proximate the simulator itself: the simulator is the reference.
Nevertheless, the simulator outputs a deterministic target for
any input data on a bounded domain, without any notion of
how likely the input configuration is in practice. Concerning
the training data, we consider a uniform distribution as we
want our surrogate model to be well trained on the whole
support of inputs and not wish to disregard cases that could
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be rare in real life. It should be noted, however, that the sam-
pled space must encompass the real space of observations
without it being oversized.

These early conclusions do not in any way mean that we
currently have the necessary tools to certify such surrogates.
Other difficulties have to be taken into account. First of all,
an average error will not be sufficient for a certification con-
text, because it reflects a global behavior whereas current
certification standards are based on the notion of the worst-
case scenario. An example is the certification of hardware by
upper-bounding the worst-case running time, as described in
(Wilhelm et al. 2008).

Recent works have proposed to construct prediction in-
tervals with high probability confidence, conditioned on the
input data (Pearce et al. 2018) and (Tagasovska and Lopez-
Paz 2019). However, the significance level accepted in crit-
ical systems is far below the ones reported in the literature
for this kind of method. Definitively, these methods remain
interesting in a trustworthy approach but will not be relevant
to provide guarantees tight enough for aeronautical certifica-
tion. Their limitation mainly lies in the fact that they fit a loss
function during the training of the neural network, which is
trained on mini-batches whose size affects the level of sig-
nificance on which we can train our model. These methods
will be further described in the Related Works section. Al-
though it can easily be assumed that it is possible to collect
an unlimited number of simulated data, the economic cost
will be a limiting factor in the long-term establishment of
certification for data-based surrogates.

Another property rather specific to these surrogates is that
under or over-estimating the target will not have the same
impact on the system’s safety. Consider a surrogate of the
landing distance of an aircraft. Under-estimating the refer-
ence distance could lead to an avoidable overrun. On the
contrary, over-estimating the reference distance may lead to
unnecessary turn-around maneuvers when the landing was
indeed safely possible. These different scenarios are sum-
marized and illustrated in Figure 1. Eventually, we are more
interested in asymmetric guarantees: if the second failure
scenario will waste money for the airline, the first failure
scenario is a threat to the safety and should be avoided in
any case for the sake of the certification of the system. Based
on this reasoning, we define the notion of safe surrogate as
a surrogate that over-approximates its reference model with
high probability.

In the next sections, we will show how we can establish
better confidence probabilities for safe surrogates than the
significance level optioned in the literature.

Related Works
Most machine learning methods that tackle regression tasks
use a symmetric loss function to train their surrogates. How-
ever, there exist asymmetric loss functions to penalize ei-
ther under-estimation or over-estimation given the context
of use (Yao and Tong 1996). The use of such functions have
been compared in the case of predictive maintenance, but
to the best of our knowledge, no theoretical guarantees for
the safety of the surrogate have been provided (Tolstikov,
Janssen, and Fürnkranz 2016).

Figure 1: Impact of over-estimating the landing distance of
an aircraft. Cases are ”runway is long enough” and ”runway
is too short”, rows correspond to reference model output,
columns correspond to surrogate model output

A whole part of the literature relies on probabilistic as-
sumptions and provide guarantees at the condition that
such assumptions are verified. In this tendency, we can cite
Bayesian modeling. Bayesian Neural Networks produce a
probabilistic relationship between the network input and
output but based on assumptions on the structure depen-
dence of the random vector of weights of the network (Gal
and Ghahramani 2015). The problem with this type of ap-
proach is that it intrinsically depends on the initial assump-
tion which is difficult to validate or belie.

Since the performance of deep neural networks are
widely known for classification tasks, (Keren, Cummins,
and Schuller 2018) cast a regression problem with uncer-
tainty as a classification task. To do so, they split the ranges
of output values into chunks, and attribute labels to each
chunk. When the prediction of a sample falls into a chunk,
first it provides an upper and a lower bound of the ground-
truth target, but also a notion of confidence on this predic-
tion. They use distillation to balance the predicted confi-
dence and the empirical uncertainty (Papernot et al. 2016).
Note that cross-entropy is not the best loss function in this
context as it penalizes equally misclassification, without any
notion of distance, and sign of the errors; which is not ade-
quate for training a safe surrogate. Probably, using Wasser-
stein loss would be more suitable (Frogner et al. 2015)

Next, we describe state-of-the-art methods to incorporate
uncertainties into the training of neural networks for regres-
sion problem.

High Quality Prediction Interval for Deep Learning In
(Pearce et al. 2018), Pearce et al. called their method QD, a
neural network that outputs a lower and an upper bound of
the prediction interval. In order to train the network, it first
expresses the prediction interval as the combination of two
uncertainty-based factors: PICP and MPIW:

• Prediction Internal Coverage Probability: given a test
dataset, PICP is the average number of points that fall
between the predicted lower and upper bounds.



• Mean Prediction Interval Width: MPIW is the average
distance between the predicted upper and lower bounds.

Based on this reasoning, they derive a training loss as a
weighted linear combination of these two costs.

Intuitively, QD must minimize the width of the predic-
tion interval, MPIW, under the assumption that most of the
predicted intervals are correct. Indeed, QD has a hyper-
parameter α such that (1 − α) represents the level of sig-
nificance. Unlike in the previous work of (Khosravi et al.
2010), QD minimizes MPIW subject to the samples that fall
into their predicted interval, so not to shrink further points
badly predicted.

LossQD = MPIW+λ
n

α(1− α)
max(0, (1−α)−PICP )2

(1)
Although QD is motivated by theoretical intuitions, sev-

eral underlying assumptions can be discussed in a certifica-
tion context:

• The training may not converge to the given significance
level for very low α.

• The predicted interval for the training samples are bi-
ased by the optimization procedure, thus the performance
should be validated on a test set.

• They assume that the probability of two samples to be
covered by their predicted interval is independent, which
may not be the case in practice when data points are simi-
lar. This assumptions is essential in their formulation as it
allows them to approximate the total number of points to
be rightly covered by a binomial distribution.

• Since the authors encounter some unstability issue by op-
timizing directly PICP, they propose a soft approximation
to be trained on.

The previous flaws can be argued and questioned, and
they can probably be put into perspective. Nevertheless, we
argue that QD cannot scale to really high significance level,
unless scaling the size of the minibatch accordingly. As ex-
plained previously, gathering many training samples will be
a limiting factor in the long-term establishment of certifica-
tion for data-based surrogates.

Single Model Uncertainties for Deep Learning The goal
of quantile regression is to estimate the conditional quantiles
F−1(τ | X = x) of a real-valued random variable Y given
another random variable X , for some quantile level τ . In
(Tagasovska and Lopez-Paz 2019) the authors propose the
SQR method to estimate the quantile distribution function
x 7→ F−1(τ | X = x) with a neural network surrogate ŷ =

f̂τ (x). To that aim, they train their surrogate to minimize the
pinball loss:

ℓτ (y, ŷ) =
{

τ(y − ŷ) if y − ŷ ≥ 0
(1− τ)(ŷ − y) otherwise

(2)

It is well known that the pinball loss is such that ŷ 7→
E
[
ℓτ (Y, ŷ) |X

]
is minimized when ŷ is equal to the level-τ

quantile of the conditional distribution of Y given X .

The authors train a surrogate with the pinball loss with a
random threshold τ to perform quantile regression simulta-
neously for all quantile levels. No theoretical analysis how-
ever quantifies how the outputs of the trained neural network
are close to the conditional quantiles of Y given X .

A Provably Safe Shifted Surrogate
The core value of this contribution is to enforce that a surro-
gate is safe with high confidence, rather than how to obtain
such a surrogate. The design of a safe surrogate will be anal-
ysed further in the next sections.

Without any prior knowledge on the reference model
(such as its smoothness), it is virtually impossible to prove
that a given surrogate is safe in a worst-case sense. It is how-
ever possible to control the probability of under-estimating
the output of the reference model without any assumptions
on it. We first define the notion of safeness below.

Definition 1 (Safe Surrogate) Let ε ∈ (0, 1). Given a ref-
erence model f : X → R and a probability distribution PX

on the domain X , we say that a surrogate f̂ : X → R is
(1 − ε)-safe if it over-approximates the reference model f
with probability at least 1− ε, i.e.,

P

(
f̂(X) ≥ f(X)

)
≥ 1− ε

or, equivalently,

P

(
f(X) > f̂(X)

)
≤ ε .

The two probabilities above are taken with respect to a ran-

dom variable X drawn from the distribution PX , but f̂ is
considered as fixed. 1

In practice, if the distribution PX is chosen to be uniform
on a bounded subset S ⊂ X (called the domain of study

thereafter), then the probability P
(
f(X) > f̂(X)

)
is the

proportion of all possible configurations x for which the sur-

rogate f̂ underestimates the reference model’s values f(x).
Such problematic event is represented in red on Figure 2.

We now point to two limitations of such high-probability
safety guarantees. First, since both our surrogate and our
reference models are deterministic, underestimation will al-

ways happen in the under-estimation region {f > f̂}. Sec-
ond, as shown by the toy illustrative cases A and B above,
the choice of the domain of study may impact the value of

the under-estimation probability P
(
f(X) > f̂(X)

)
. Indeed

the domain of study should contain the usage domain (all
typical configurations), but taking it much larger may de-
crease (case A) or increase (case B) the weight of the under-
estimation region. As a consequence, high-probability guar-
antees should be interpreted carefully and used in conjunc-
tion with a proper choice of the distribution PX .

Certification authorities will most likely require safe-
guards. Without being exhaustive, among the justifications
that will be necessary, we mention the following:

1More formally, if f̂ is constructed using a training set, then
these probabilities are conditional probabilities given the training

set. We look for guarantees that hold for every realization of f̂ .



Figure 2: A toy illustration of the meaning of high-

probability safety guarantees, where ∆Y = f(X) − f̂(X).
Taking a larger domain of study than the usage domain may
decrease (case A) or increase (case B) the weight of the
under-estimation region.

• The domain of study must contain the usage domain,
without it being oversized, in order to avoid underestimat-
ing the risk of underestimation in the real usage domain.

• Ultimately, the surrogate should be validated on real sce-
narios (such as flight tests).

Next we explain how to compute a certified upper bound

on the probability P
(
f(X) > f̂(X)

)
. We follow a very

natural Monte-Carlo approach: we sample random points
X1, . . . , Xn independently from the same distribution PX

in the domain of study, and count how many errors f(Xi)−

f̂(Xi) are positive. Importantly, the test dataset X1, . . . , Xn

is independent from the training set that was used to build

the surrogate f̂ .

Bernstein’s inequality to assess safeness

To assess how safe is a given surrogate f̂ given n observa-

tions f(Xi) and f̂(Xi), we use a probabilistic deviation in-
equality known as Bernstein’s inequality (Bernstein 1924).
The version we state below is a direct consequence of Theo-
rem 2.10 in (Boucheron, Lugosi, and Massart 2013), instan-
tiated with the random variables −1

f(Xi)>f̂(Xi)
, 1 ≤ i ≤ n,

and the parameters v = nP(f(X) > f̂(X)) and c = 1/3.
The constant 3.15 could probably be slightly improved.

Proposition 1 (Consequence of Bernstein’s inequality)
Consider n ≥ 2 independent random variables X1, . . . , Xn

drawn from the same distribution PX in the domain of

study, and independent of the training set (f̂ is considered
as fixed). We estimate the under-estimation probability by

Ĝn =
1

n

n∑

i=1

1
f(Xi)>f̂(Xi)

Then, for any risk level δ ∈ (0, 1), the following inequality
holds with probability at least 1 − δ over the choice of the
test set X1, . . . , Xn:

P
(
f(X) > f̂(X)

)
≤ Ĝn +

√
2Ĝn

n
ln

(
1

δ

)
+

3.15

n
ln

(
1

δ

)

The above result means that, over all possible choices of
the test set X1, . . . , Xn, a large proportion 1 − δ of them

allows us to upper bound the probability P
(
f(X) > f̂(X)

)

by the observed probability Ĝn plus a small remainder term

proportional to

√
Ĝn ln(1/δ)/n+ ln(1/δ)/n.

Note also that when we observe Ĝn = 0, we have a high-
confidence proof that our surrogate is (1− ε)-safe, with ε =
3.15 ln(1/δ)/n. However, we get a non-negligible value for

ε whenever Ĝn is bounded away from zero. A simple way to

make Ĝn smaller is to shift the surrogate predictions f̂(X)
by a non-negative amount t. In the next paragraphs we study
how to choose t in order to get a provably small upper-bound

on P
(
f(X) > f̂(X) + t

)
.

Shifted Surrogate

As mentioned above, we propose to consistently shift the

predictions of the surrogate f̂ by a non-negative real num-
ber t, in order to make it (1 − ε)-safe with a small value
of ε. More precisely, we consider the notion of shifted sur-
rogate defined below, and illustrated on Figure 3. The main
theoretical guarantee will be stated in Corollary 1 below.

Definition 2 (Shifted Surrogate) Given a surrogate f̂ :
X → R and a threshold t ≥ 0, the shifted surrogate

f̂shift : X → R is simply defined by

f̂shift(x) = f̂(x) + t (3)

Figure 3: Illustration of the shift operation on a uni-
dimensional surrogate. The blue line corresponds to the
graph of the surrogate. Since several outputs f(Xi) are
under-estimated, we compute the largest non-negative error

t = max
(
0,maxi

{
f(Xi) − f̂(Xi)

})
and shift the surro-

gate’s predictions upwards, by adding t everywhere.

Let t = max
(
0,maxi

{
f(Xi) − f̂(Xi)

})
denote the

largest non-negative error on the test set. When shifting the
surrogate’s predictions upwards with t, the shifted surrogate
never under-estimates the reference model, i.e.,

1

n

n∑

i=1

1{f(Xi)>f̂(Xi)+t} = 0 .

It is thus tempting to use Proposition 1 with Ĝn = 0, but this
is not allowed since t depends on the test set which is also



used to estimate the under-estimation probability. Instead we
use a uniform deviation inequality stated in Theorem 1 be-
low. It provides an upper bound G(t) ≤ G+(t) similar to
that of Proposition 1, but which holds simultaneously for all
(possibly data-driven) shifts t ≥ 0.

Theorem 1 (A uniform Bernstein-type inequality)
Consider n ≥ 2 independent random variables X1, . . . , Xn

drawn from the same distribution PX in the domain of study,

and independent of the training set (f̂ is considered as fixed).

We define G(t) and Ĝn(t) for all t ∈ R by

G(t) = P(f(X) > f̂(X) + t)

Ĝn(t) =
1

n

n∑

i=1

1{f(Xi)>f̂(Xi)+t}

Let δ ∈ (0, 1). Then, with probability at least 1− δ over the
choice of the test set X1, . . . , Xn, we have: for all t ∈ R,

G(t) ≤ Ĝn(t) +

√
2Ĝn(t)

n
ln
(n
δ

)
+

5.67

n
ln
(n
δ

)

︸ ︷︷ ︸
=:G+(t)

. (4)

The constant 5.67 has not been optimized and could prob-
ably be slightly improved. 2 The proof of this well-known
inequality follows from several calls to Theorem 2.10 by
(Boucheron, Lugosi, and Massart 2013) at quantiles t =
G−1(k/n) for k = 1, 2, . . . , n − 1 (where G−1 is a gen-
eralized inverse), and from the fact that true and empirical
cumulative distribution functions are non-decreasing. The
result is valid without any assumption on G.

The above theorem yields the important following corollary,
which is valid for any reference model f : X → R and

any surrogate model f̂ : X → R. The fact that we only
guarantee safeness with high probability (upper bound on
the under-estimation probability G(tmax)) instead of 100%-
safeness is somehow the price to pay for not requiring any

assumption on f nor f̂ .

Corollary 1 (Safeness proof for shifted surrogate)
Under the same assumptions as in Theorem 1, denote by
tmax the largest non-negative error on the test set:

tmax = max
(
0, max

1≤i≤n

{
f(Xi)− f̂(Xi)

})
.

Then, Ĝn(tmax) = 0 so that, with probability at least 1− δ
over the choice of the test set X1, . . . , Xn,

G(tmax) ≤
5.67

n
ln
(n
δ

)
, (5)

which is a high-confidence proof (with confidence level 1−δ)

that the shifted surrogate f̂shift = f̂ + tmax is (1 − ε)-safe,
with ε = 5.67 ln(n/δ)/n.

2We could also probably replace the terms ln(n/δ) with
c1 ln(c2/δ) for some constants c1, c2 > 0, using self-normalized
empirical process results from (Shorack and Wellner 1986).

We stress that shifting the surrogate impacts its perfor-
mances as it may increase drastically the gap between the
target and its predictions. Hence, encouraging the surrogate
to be safe during the training is highly relevant. However,
as for the statistical based loss functions described in the
Related Works section, there are no existing theoretical re-
sults to guarantee that training a surrogate with safeness-
promoting constraints is indeed safe in the sense of Defi-
nition 1. We thus recommend to:

(i) first build a surrogate with safeness-promoting constraints
(so that shifting in Step (ii) does not deteriorate the surro-
gate too much);

(ii) then shift the surrogate as in Corollary 1 to guarantee safe-
ness with high probability.

In the next section, we design a new loss function to make
the training step (i) more safeness-promoting.

Training a Safe Surrogate

In order to minimize the required shift for our surrogate f̂ ,
it is natural to take this shift into account during the learning
stage. We design a new loss function that we call Shifted
Mean Squared Error or SMSE for short. It corresponds to
the average squared error between the true target and the
shifted predictions on a minibatch. On each minibatch the
shift is the largest positive error on that minibatch. A pseudo-
code describing our loss function is provided in Algorithm 1.
The size of the minibatches must be large enough so as to be
a good approximator of the shift on the test set.

Algorithm 1 SMSE: Shifted Mean Squared Error

Require: Target values y, predictions ŷ, minibatch
{(xi, yi)}

n
i=1

# approximate the shift that will be operated on the test
set by the maximum error on the minibatch
t = max(0,maxi {yi − ŷi})

SMSE = 1
n

n∑
i=1

(yi − ŷi − t)
2

return SMSE

For stability issue, we recommend to pre-train the surro-
gate with MSE. After this pre-training, the network is mod-
ified by stacking on top of it a Dense Layer made of one
multiplicative factor plus a bias factor, respectively set to
one and zero initially. This allows the surrogate not to be
modified in case the shifted pre-trained network would be
optimal.

Experiments

We apply our safe learning method (Steps (i) and (ii) in the
last section) on three different datasets, with the objective
to promote the efficiency of shifted surrogates when trained
with safeness constraints and to demonstrate the potential of
our method on an industrial use-case. We compare a surro-
gate trained with the SMSE loss function with three different
loss baselines:

1. MSE: Mean Squared Error



2. A-MSE: Asymmetric Mean Squared Error.

LA MSE(y, ŷ) = exp (α(y − ŷ))− α(y − ŷ)− 1

3. A-QD: Assymetric QD. We modify the loss function pro-
posed in (Pearce et al. 2018) to learn only the upper-bound
of their prediction interval. 3

1D toy model

Our first example mimics a 1-dimensional reference model
defined as follows:

∀ x ∈ [−2, 2] , z =
1.5 sin(πx)− 0.3

0.3

f(x) =
z + 2 cos(πz)

6

We designed this reference model to have bumps of vary-
ing amplitudes that are challenging for a surrogate. We sam-
pled 1100 samples for both the training and the validation
of our network, a two layer network with ReLU activation,
optimized with RMSProp on mini-batches of size 32. We
compute the shift on an independent test set made of 1000
samples.

Figure 4 shows different results comparing the shifted
safe surrogate models learnt with different strategies.

The first graph (top-left) shows the evolution of MSE
computed on the four shifted surrogates as a function of the
size of the test dataset. Vertical bars indicate standard devi-
ation roughly estimated on five runs. In this graph, we show
that in this simple case, our training method combined with
the safe shift has the least effect on accuracy.

The second graph (top-right) shows the evolution of the
upper-bound G+(t) of the under-estimation probability with
the shift value t. For t > 0.2, the shift SMSE surrogate out-
performs all other methods.

The third graph (bottom-left) shows the surrogate models
learnt from the 4 different methods. A QD is mostly over-
estimating the reference, as the safe MSE method. Stan-
dard MSE does not over-estimate, of course, neither does
the A-MSE. For this last method, results could be slightly
improved by a better tuning of the asymmetric loss function.

The last graph (bottom-right) compares the shifted sur-
rogate models from the 4 different methods with the refer-
ence model on its input range. As expected, they all over-
estimate the reference model but as could be deduced from
first graph, SMSE is the most accurate after shifting.

Multidimensional toy model

Since our work focuses on the guarantees of a surrogate on
numerical simulations, our second toy dataset focuses on Or-
dinary Differential Equations (ODEs), specifically, on mod-
eling the propagation of a disease through time, given vary-
ing initial conditions. In this lighthearted example, a system
of ODEs can be used to model a zombie-like invasion, using
the equations specified in (Munz et al. 2009). Similarly as

3we use the code in the github repository:
github.com/TeaPearce/Deep Learning Prediction Intervals

(a) MSE of shifted surrogates

(b) log(G+(t)) with δ = 10−9

(c) Surrogates before shifting

(d) Surrogates after shifting

Figure 4: 1D toy model use-case



in predictive maintenance, one would need to estimate the
number of people affected after a given period, to produce
enough treatment. Our training, validation and test set con-
tains respectively 50.000, 10.000 and 10.000 samples.

We train a safe surrogate to over-predict the number of
patient after a given amount of time. Our simulation relies
on the three basic classes presented in (Munz et al. 2009),
plus five ratio per day that describe the behaviors of the pop-
ulation, such as the birth rate. Our regression task consists in
predicting the number of patients after five days. Our surro-
gate is a network of 6 fully connected layers, whose activa-
tion functions are either ReLU, either linear. A full descrip-
tion is provided in our code repository.4

Figure 5 shows different results comparing the shifted sur-
rogate models learnt with different strategies, averaged on 5
runs.

The first graph (top-left) shows the evolution of MSE
computed on the four shifted surrogates as a function of
the test database size. The second graph (top-right) discards
A QD method for better comparison. In these graphs, we
show that in this case, our training method SMSE combined
with the safe shift has the least effect on accuracy. We may
need to review our A QD learning as it seems very poor
compared to the other methods.

The third graph (bottom-left) shows the evolution of
the upper-bound G+(t) of the under-estimation probability
given the shift value t. For t > 25, the shift SMSE surrogate
ensures same risk as MSE and A-MSE surrogates.

The last graph (bottom-right) scatters the errors obtained
with shift MSE and shift SMSE surrogates given the real
number of patient. the errors made by the shifted SMSE sur-
rogates are smaller than for the MSE surrogate for the same
associated output.

Industrial Use-case

The industrial dataset is sampled from a real simulator used
in aeronautics that predicts the landing distance given seven
inputs. No additional details can be shared on this use case
but the same methods have been applied on it and results are
shown in this subsection.

The objective is to train a Neural Network surrogate
model that will predict the braking distance with a non-
negative error on the whole input domain compared to the
reference model. The input domain on which we train the
surrogate has been defined by industrial experts to include
all potential operational conditions. Our training, valida-
tion and test set contains respectively 544.000, 181.000 and
181.000 samples.

Figure 6 shows different results comparing the shifted sur-
rogates learnt with different strategies.

The first graph (top-left) shows the evolution of MSE
computed on the four shifted surrogates as a function of
the test database size. The second graph (top-right) discards
A QD method for better comparison. In these graphs, we
show that in this case, our training method SMSE combined
with the safe shift has the least effect on accuracy.

4The github adress will be provided after the rebuttal

(a) MSE of shifted surrogates

(b) MSE of shifted surrogates

(c) log(G+(t)) with δ = 10−9

(d) Surrogate accuracy

Figure 5: Zombie use-case



(a) MSE of shifted surrogates

(b) MSE of shifted surrogates

(c) log(G+(t)) with δ = 10−9

(d) Surrogate accuracy

Figure 6: Braking Distance Estimation use-case

The third graph (bottom-left) shows the evolution of the
upper-bound of the under-estimation probability with the
shift value t. For t > 70, the SMSE surrogate ensures same
risk as MSE and A-MSE surrogates.

The last graph (bottom-right) compares the errors of sur-
rogate models built with MSE and SMSE given the landing
distance. SMSE shifts are slightly lower than for the MSE
surrogate in terms of loss of accuracy.

Since the interval of values for the landing distance is
rather large, a relative error seems more appropriate to
tackle our problem. Upper-bounding a relative error results
into a multiplicative shift instead of an additive shift. Simi-
larly as what has been proposed with SMSE, we can take
into account this shift into the training of the loss function.
We call this loss function R-SMSE and compare it with the
relative pendent of our baselines (R-MSE and AR-MSE).
A version of the pseudo-code of R-SMSE is available in
Algorithm 2. The efficiency of R-SMSE compared to the
baselines is empirically demonstrated in Figure 7.

(a) R-MSE of shifted surrogates

(b) Surrogate accuracy

Figure 7: Braking Distance Estimation use-case trained with
relative error

Conclusion

In this paper we studied how to build a safe surrogate model
for a given reference model, with the aim of embedding the
surrogate into an aeronautical platform. We considered sit-
uations where safety means that the surrogate model should
over-estimate the reference model, as in the braking distance
estimation problem. We used Bernstein-type deviation in-
equalities to estimate the probability of under-estimating the
reference model. This allows to compute a safe shift for any
surrogate model. The shift is applied uniformly on all the
input domain, so it could deteriorate the accuracy of the sur-
rogate. We thus proposed a way to constrain the surrogate



Algorithm 2 R-SMSE: Relative Shifted Mean Squared Error

Require: Target values y, predictions ŷ, minibatch
{(xi, yi)}

n
i=1

# approximate the relative shift that will be operated on
the test set by the maximum error on the minibatch

t = max

(
0, max

i,yi>ŷi

{
(yi−ŷi)

2

ŷ2
i

})

R-SMSE = 1
n

n∑
i=1

(yi−(1+
√
t)ŷi)

2

((1+
√
t)ŷi)2

return R-SMSE

learning phase in order to keep as much accuracy as pos-
sible. We compared the newly obtained loss function with
other asymmetric loss functions. When all the associated
surrogates are post-processed with our safe shift procedure,
our loss function yields slightly better accuracy results.

Future work will focus on improving the accuracy of the
safe shift. We also plan to compare our approach and guar-
antees with the very recent work on conformalized quantile
regression (Romano, Patterson, and Candès 2019).
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