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Abstract. A scattered context grammar, G, erases nonterminals in a k-
limited way, where k£ > 1, if for every sentence belonging to G's language,
there is a derivation such that in every sentential form, between every
two symbols from which G derives non-empty strings, there is a string
of no more than k nonterminals from which G derives empty words.
This paper demonstrates that any scattered context grammar that erases
nonterminals in this way can be converted to an equivalent scattered
context grammar without any erasing productions while in general, this
conversion is impossible.
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1 Introduction

This paper discusses scattered context grammars, which represent an important
type of semi-parallel grammars (see [1-4,6-8,12, 13]). It concentrates its inves-
tigation on the role of erasing productions and the way they are applied in these
grammars. While scattered context grammars with erasing productions charac-
terize the family of recursively enumerable languages, the same grammars with-
out erasing productions cannot generate any non-context-sensitive language (see
[3,4]). As a result, in general, we cannot convert any scattered context grammar
with erasing productions to an equivalent scattered context grammar without
these productions. In this paper, we demonstrate that this is always possible
if the original grammar erases its nonterminals in a k-limited way, where k is
a positive integer; for every sentence there is a derivation such that in every
sentential form, between any two symbols from which the grammar derives non-
empty strings, there is a string of no more than k nonterminals from which the
grammar derives empty strings later in the derivation. Consequently, the scat-
tered grammars that have erasing productions but apply them in a k-limited
way are equivalent to the grammars that do not have erasing productions at all.

In [3] it was demonstrated that a language generated by propagating scat-
tered context grammars is closed under restricted homomorphism. Note that our
definition of k-limited erasing differs significantly from the way how symbols can
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be erased using restricted homomorphism. While in case of restricted homomor-
phism a language can be generated by a propagating scattered context grammar
in case that at most k symbols are deleted between every two terminals in a
sentence, in case of a scattered context grammar which erases its nonterminals
in a k-limited way virtually unlimited number of symbols can be deleted between
every two terminals in a sentence in case that during the derivation process be-
tween two non-erasable symbols there is a string of at most k& erasable symbols.
Therefore, the result presented in this paper represents a generalization of the
previously published result.

2 Preliminaries

We assume that the reader is familiar with the language theory (see [5,9-11]).
For an alphabet, V, card(V) denotes the cardinality of V. V* represents the
free monoid generated by V under the operation of concatenation. The unit
of V* is denoted by e. Set V* = V* — {e}. For w € V*, |w| and alph(w)
denote the length of w and the set of symbols occurring in w, respectively. For
L CV* alph(L) = {a : a € alph(w),w € L}. Let pos(ay ...a;...an,i) = a; for
1<i<n,a;...an € VT,

A context-free grammar (see [5]), a CFG for short, is a quadruple, G =
(V,T, P, S), where V is an alphabet, T CV, S €V —T, and P is a finite set of
productions such that each production has the form A — z, where Ae V - T,
z € V*. Let lhs(A — z) and rhs(4 — z) denote A and z, respectively. If A —
z € P, u=rAs, and v = rzs, where r,s € V*, then G makes a deriation step
from u to v according to A — z, symbolically written as u = v [A — z] in G
or, simply, u = v. Let =T and =* denote the transitive closure of = and the
transitive-reflexive closure of =, respectively. The language of G is denoted by
L(G) and defined as L(G) ={z : ¢ € T*,S =* z}.

3 Definitions and Examples

A scattered context grammar (see [1-4,6-8,12,13)), a SCG for short, is a quadru-
ple, G = (V,T,P,S), where V is an alphabet, T CV,SeV —T,and P is a
finite set of productions such that each production has the form (A;,..., 4,) —
(z1,...,Tn), for some n > 1, where A; € V~T, z; € V*, for 1 < i < n.
If every production (Ai,...,4,) — (z1,...,z,) € P satisfies z; € VT for
all 1 < ¢ < n, G is a propagating scattered context grammar, a PSCG for
short. If (A1,...,A4n) — (Z1,...,2Zn) € P, u = ujAjus... unApusy1, and
U = UIT1USZ ... UnTpln+1, Where u; € V*, 1 < i < n, then G makes a deriva-
tion step from u to v according to (4;,...,4,) — (z1,...,Z,), symbolically
written as u = v [(A1,...,4n) — (21,...,2,)] in G or, simply, u = v. Set
T((A1,.. ., Ap) = (z1,...,Zn)) = |41 ... Anl = nand p((A1,...,An) — (z1,. ..,
z,)) ={A41 - z1,..., A, — z,}. Let =% and =* denote the transitive closure
of = and the transitive-reflexive closure of =, respectively. The language of G
is denoted by L(G) and defined as L(G) = {z : z € T, S =" z}.



k-Limited Erasing Performed by Scattered Context Grammars 229

The core grammar underlying a scattered context grammar, G = (V, T, P, S),
is denoted by core(@) and defined as the context-free grammar core(G) =
(V\T,cf(P),S) with cf(P) = {B -y : B — y € p(p) for some p € P}. Let
v = urAjusAs .. unA, un+1 = UTIULLY . . . UpTplnsy = W [(A1,...,A4,) —
(z1....,2,)] in G. The partial m-step context-free simulation of this step by
core(G) is denoted by pef,,(v = w) and defined as core(G)’s m-step deriva-
tion of the form u;AjusAs .. . UunAnuni1 = urTiuzAs .. U AplUns) = ... =
UITIU2TD -« - U T Um1 Ami1 - . - UnAnUnt1 Where m < n. The context-free sim-
ulation is a special case of the partial m-step context-free simulation for m = n,
denoted by cf(v = w). Let v = v; =* v, = w be a derivation in G of the form
V] = vz = w3 = ... = Un. The context-free simulation of v =* w by core(G) is
denoted as cf(v =~ w) and defined as v; =* vy =" v3 =* ... =* v, such that
forall 1 <4 <n-1,v; =* v;4] in core(G) is the context-free simulation of v; =
vi+1 in G. Let § =* z in G be of the form S =* udv =* z. Let cf(S =* z) in
core(() be the context-free simulation of § =* z in G. Let ¢ be the derivation
tree corresponding to S =* z in core(G) (regarding derivation trees and related
notions, we use the terminology of [5]). Consider a subtree rooted at A in ¢. If the
frontier of this subtree is €, then G erases A in S =* uAv =" z, symbolically
written as A, and if this frontier differs from ¢, then G does not erase A durmg
this derivation, symbolically written as A Ifw = A1 A orw = A ..
we write W or W, respectively. Let G = (V,T, P, S) be a SCG, and let k > 0. G
erases its nonterminals in a k-limited way if for every y € L(G) there exists a
derivation S =* y such that every sentential form z of the derivation satisfies
the following two properties:

1. Every z = uAvBuw, A, B, v, satisfies lv| < k.
2. Every z = uAw, A, satisfies: if & or w, then |u| < &k or |w] < k, respectively.

Ezamples

1. Observe that the grammar G1 = ({S, A4, B,C, A', B',C",a,b,c,y},{a, b, c,y},
{(S) — (ABC),(4) — (aAA’) (B) — (bBB'),(C) — (cCC"), (A, B,C) —
(v, 9), (A, B',C") — (y,4,%)},S) generates the language L(G;) = {a
ytipnyntl "y”+1 : n > 0}. Therefore, there does not exist any restricted
homomorphism h such that A(L(G1)) = {a™b"c" : n > 0}. However, as
demonstrated by the following example, there exists a scattered context
grammar which erases its nonterminals in a k-limited way.

2. Observe that the grammar G, = ({S,A,B,C,A,B',C’,a,b,c},{a,b,c},
{(S) — (ABC),(A) — (aAA"),(B) — (bBB'),(C) — (cCC"),(A,B,C) —
(6,6,2),(A",B',C") — (e,6,6)},S) generates the language L(G:) =
{a™b"c™ : n > 0}. As the derivation of any string aa...aabb...bbcc...cc €
L(G>) may be of the form

S = ABC =* aAA'bBB'cCC" = aAbBcC
=* aaAA'bBB ccCC' = aaAbbBccC
=*aa...aaAA'bb.. . bbBB'cc...ccCC’
= aa...aaAbb...bbBce...ccC = aa...aabb...bbcc. .. cc
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the grammar erases its nonterminals in a 2-limited way.

3. Consider the grammar G3 = ({9, 4, B, A’, B’,a,b,c},{a,b,c}, {(S) — (AA),
(A, A) — (aAd,A’A), (A A) — (B, B) (B,B) — (bBe, B'B), (B, B) (g,¢),
(A',B’) — (g,¢)},S). Observe that L(Gg) = L(G2). However, because the
first part of every derivation has the form

S = AA = aAAA = aaAAA'A="aa...aAAA ... AA

and all A”’s are deleted in the second part of the derivation, there does not
exist any k such that G3 erases its nonterminals in a k-limited way.

4 Results

The main result of this paper follows next.

Theorem 1. For every SCG, G, which erases its nonterminals in a k-limited
way there ezists a PSCG, G, such that L(G) = L(G).

Proof. Let G = (V,T,P,S) be a SCG which erases its nonterminals in a k-
limited way. For every p = (Ay,...,A4;,...,4n) — (T1,. ., Ziy ..., Zn) € P let
|p,i] denote A; — z; forall1 <i <n.Let¥ = {|p,i] : pe P,1 <i<7(p)}
and V' = {|p,i]' : |p,i] €¥}. Set Ny ={(z) : 2 € (V-T)*U(V-T)*T(V —
T)*,|z| < 2k + 1}. For every (z) € N, and |p,i| € ¥, define

lhs-replace((z), |p,t]) = {{z1|p, t)z2) : 21,22 € V*, 21 lhs(|p,1])z2 = x}.

Set Ng_: {(z) : (z) = lhs-replace({y), |p,i)), () € N1, |p,i] € ¥}. For every
(zy € Ny and |p,i]’ € ¥, define

insert((z), |p,7]") = {{z1|p, i) z2) : z1,22 € V*, 2179 = x}.

Set Ny = {(z) : (2) = insert({y), [p,7)"), (y) € Ni,|p,i)' € ¥'}. For every
= (z){x2) ... (z,)) € (N, UN, UNZ) for some n > 1, define

join(z) = z1xq ... Tn.
For every x € Ny U No U N}, define
split(z) = {y : = = join(y)}.
Set V =T U N, UN,UN} U{S}. Define the PSCG,
G=(V,T,P,S),
with P constructed as follows:

1. For every p = (S) — ( ) € P, add
(5) = ((ip. 1)) wo
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2. For every (z) € Ny, every X € insert({z), |p,n]), where p € P, n(p) = n,

(
every (y) € Ny, and every Y € lhs-replace((y), lg,1]), where ¢ € P, add
— ((z),Y), and
(Y, () to P;

(

3. For every (z) € Ny, every X € insert((z), |p,i]’), where p € P, i < n(p),
every (y) € N1, and every Y € lhs-replace((y), |p,i+ 1]), where ¢ € P, add
(a) (X,(y)) — ((z),Y) to P;

(b) if (z) = (y) and pos(X,l) = |p,i]’, pos(Y,m) = [p, i+ 1}', | <m, add
(X) — (Y) to P;

4. For every (z1|p,i|z2) € ths-replace((z), |p,i]), (z) € N1, |p,i] € ¥, z1,22 €
V*, and every Y € split(z; rhs(|p,t])|p, 1) z2), add
(z1lp,i]z2)) — (Y) to P;

5. For every a € T', add
({a)) — (a) to P.

Denote the set of productions introduced in step ¢ of the construction by ; P, for
1<i <5,

Let S =%y =™ win G, w € L(G), y € (N1 U N U N4)*, and let for every
(z) € alph(y) there exist

1. A € alph(z) such that A or i
2. |p,t] € alph(z), |p,i] € ¥, A = lhs(|p,]) such that A.

Then we write g.

Basic Idea. G simulates G by using nonterminals of the form (...). In each
nonterminal of this form, during every simulated derivation step, G records a
substring of the corresponding current sentential form of G.

The rule constructed in (1) only initializes the simulation process. By rules
introduced in (2) through (4), G simulates the application of a scattered context
rule p from P in a left-to-right way. In greater detail, by using a rule of (2),
G nondeterministically selects a scattered context rule p from P. Suppose that
p consists of context-free rules r1,...,7,-1,7;,...,7,. By using rules of (3) and
(4), G simulates the application of r; through 7, one by one. To explain this in
greater detail, suppose that G has just completed the simulation of r;_;. Then,
to the right of this simulation, G selects lhs(r;) by using a rule of (3). That
is, this selection is made inside of G’s nonterminal in which the simulation of
r;—1 has been performed or in one of the nonterminals appearing to the right
of this nonterminal. After this selection, by using a rule of (4), G performs the
replacement of the selected symbol lhs(r;) with rhs(r;).

If a terminal occurs inside of a nonterminal of G, then a rule of (5) allows G
to change this nonterminal to the terminal string contained in it.
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Rigorous Proof. (Due to the requirements imposed on the length of this paper,
the formal proofs of the following three lemmas are omitted.)

Lemma 1. Fuvery successful derivation in G can be expressed in the following

way:
S = (p.1]) [p]

:>§—z U (D]

S5 o],

where p1 = (S) — (|p,1]) € 1P, u = {a1)(as) ... (an), n>1,a1,a0,...,ap €T,
V=a1az2...a,, P and O are sequences of productions from (3PU3PU4P), and
5P, respectively.

Lemma 2. Let
wy € split(uy[p, L|usds .. unAptni1) and A = ug AyusAg .. Up Aptinyg1,

UlyeeyUngr €V, Ay, A €V =T, Ay =1hs(|p, 1)), p € P, and Wy, then,
every partial h-step context-free simulation

pth(/\ = U1A1UQA2 PPN unAnun+1

=G UIT1UT2 - - UnTnUnt1 [P = (A1,...,An) — (21,...,70)])
of the form
U1A1U2A2U,3A3 e UnAnun+1 =A
= core(G) urT1us Azuz Az . . UnAplint [Al - 371]
= core(G) U1Z1U2T2U3 A3 ... Un Aplini1 [A2 — 7]
R

~2
:Core(g) UIT1U2T2UITS - - - UpThUpy1Antl - o UnApling
15 performed in core(G) if and only if
’ 4
wy [py]

wy [p3]
wy [p3]

b4y

wn ]
w), i)

is performed in G, where p3,...,p} € 3P, p},...,pt € 4P, and

[aa C)’SE QY Q
&

R

wy € split(uizi[p, 1) us Az .. upAntniy),
wy € split(uiziuz|p, 2] .. unAntnyt),
’LU/2 € split(ulxlwzg Lp, QJ/ o unAnun+1),

wy, € split(uiz1up®a .. un|p, A unt1Anir - o UnAptngr),
w), € split(urz1us®s ... uAZa D, B} Uns1 Ant1 - UnAnting1);

in addition, every w € {wa,...,wh,wi,...,w}} satisfies 0.
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Corollary 1. The result from Lemma 2 holds for a context-free simulation.

Let

u1A1u2A2 con unAnU71+1
=G UIT1URTY - . UnTplUns1 [P = (A1,...,An) = (T1,...,20)])

for some p € P. Then, — denotes the simulation of this derivation step in G as

shown in Lemma 2 and Corollary 1. We write w; — w/, [p], or, shortly, w, —

/ 2n—-1 s e : /
wy,. Therefore, w1 =g""" wj, from Lemma 2 is equivalent to wy — wy,.

Lemma 3. Letz, € V™ and T} € split(z}, [p1, 1]|2}s), where iy Ihs(|p1, 1))z,
=11, |p, 1] € ¥, and T7; then every deriwation

T
=G T2 (p1]
=G Tmt1 [Pm]

18 performed in G if and only if

- I (p1]
St [Pl
- Iy [p2]

=¢ T3 [p4]
= Iy [Pm]
=¢ Tmy1 [Pl
is performed in G, where T2, ..., Tm+1 € V*, D15, Pm € P, Dy ..., Prusr € 2P,
T; € split(za [ps, m(pi) ) 2i2),
) € split(z}y [pj, 1]z)a),

foralll<i<m,2<j<m, and

jin#»l € split’(x/(m+l)1 I.p7n+1! 1Jx/(m+l)2) with Tm+1 ¢ T,
or
Z,, 1 € split(Timq1) with Tppy €T,
where T;1T0 = x; for all 1 <1 < m, x;«llhs(ij.lj)xgz =g, forall2 < j <
m+ 1, and every T € {Z1,...,Tm, T, ..., Ty} satisfies T.

From Lemma 1,

S =& <L’D7 1J>
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As (|p,1]) € split(|p, 1]), S = lhs(|p, 1)), G’s simulation as described in Lemma
3 can be performed, so
(. 1)) =& u (2],

where @ is a sequence of productions from s PUsPU4P. If a successful derivation
is simulated, then we obtain u = (a;}{az2)...{an), n > 1, ay,a2,...,a, € T.
Finally, by the application of productions from 5P we obtain

=%,

where v = ajas ... ay,. Therefore, for every:S'CG, G, which erases its nonterminals
in a k-limited way there exists a PSCG, G, such that L(G) = L(G). O
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