General Multigenerative Grammar Systems

Roman Luk43!, Alexander Meduna'

! Dept. of Information Systems, Faculty of Information Technology, Brno University of
Technology, BoZetéchova 1, 612 66 Bmo, Czech Republic
{lukas, meduna} @fit.vutbr.cz

Abstract. This paper presents new models for generating matrix languages.
These models are based on multigenerative grammar systems that
simultaneously generate several strings in a parallel way. The components of
these models are context-free grammars, working in a general way. The
rewritten nonterminals are determined by a finite set of nonterminal sequences.

Keywords: Grammar system, matrix grammar, general derivation.

1 Introduction

The formal language theory has intensively investigated various grammar systems
(see [1], [2], [8]), which consist of several cooperating components, usually
represented by grammars. Although this variety is extremely broad, all these grammar
systems always use a derivation that generates a single string. In this paper, however,
we introduce grammar systems that simultaneously generate several strings, which are
subsequently composed in a single string by some common string operation, such as
concatenation.

More precisely, for a positive integer n, an n-multigenerative grammar
system discussed in this paper works with # context-free grammatical components in
a general way-—that is, in every derivation step, each of these components rewrites
any nonterminal occurring in its current sentential form. These n derivations are
controled n-tuples of nonterminals or rules. Under a control like this, the grammar
system generates n strings, out of which the strings that belong to the generated
language are made by some basic operations. Specifically, these operations include
union, concatenation and a selection of the string generated by the first component.

In this paper, we prove that all the multigenerative grammar systems under
discussion characterize the family of languages, which is generated by matrix
grammars. Besides this fundamental result, we give several transformation algorithms
of these multigenerative grammar systems.

2 Preliminaries

This paper assumes that the reader is familiar with the formal language theory (see
[4]). For a set, O, card(Q) denotes the cardinality of Q. For an alphabet, V, V
represents the free monoid generated by ¥ under the operation of concatenation. The

206 R. Lukas and A. Meduna

unit of V" is denoted by &. Set ¥ = V" — {&}; algebraically, V" is thus the free
semigroup generated by ¥ under the operation of concatenation.

A context-free grammar is a quadruple, G = (N, T, P, S), where N and T are disjoint
alphabets. Symbols in N and T are referred to as nonterminals and terminals,
respectively, and S € N is the start symbol of G. P is a finite set of rules of the form A
—> x, where 4 € N and x € (N U T)". To declare that a label r denotes the rule, we
write as 72 A — x. Letu, ve (N U T)". For every r: 4 — x € P, write udv = uxv [r],
or simply udv = uxv. Let =" denote the transitive-reflexive closure of =>. The
language of G, L(G), is defined as L(G) = {w: S=" win G, forsome w € T'}.

A matrix grammar is a pair, H = (G, M), where G = (N, T, P, S) is a context-free
grammar and M is a finite language over alphabet P, M P’ Let xg, X1, ..., Xp € N
) T)* forany n > 0, x,; = x; [p;]Jin G foralli =1, ..., n and p\p,...p, € M. Then
matrix grammar / makes direct derivation step from x to x,, denoted as x, = x,,. Let
=" denote the transitive-reflexive closure of =. The language of H, L(H), is defined
as L(H)={w: S= winH, forsome w € T'}.

3 Definitions

Definition 1. An n-multigenerative nonterminal-synchronized grammar system (n-
MGN) is an n+1 tuple,

I'= (Gly G27 [EET Gm Q)s

where G; = (N,, T}, P;, S;) is a context-free grammar for eachi =1, ..., n,and Q is a
finite set of n-tuples of the form (4, 4,, ..., 4,), where 4; € N; foralli=1, ..., n.
Then, a sentential n-form of n-MGN is an n-tuple of the form y = (x|, x5, ..., X,),
where x; € (N, U T,-)* foralli=1, ..., n. Let x = (ud\vi, udvs, ..., u,d,v,) and y =

(uyx vy, uxava, ..., UX,v,) be two sentential n-form, where 4; € N;, w;, v;, x; € (N; U
Tif foralli=1,...,n Letd;, > x; € P;foralli=1, ..., n and (4, A,, ..., A,) € Q.
Then y directly derives j in I', denoted by x = 5. In the standard way, we

generalize = to =* k>0,=" and =". The n-language of T, n-L(I'), is defined as
n-L(T') = {(wy, wy, ..., w,): (S}, 85, ..., S,) =" (Wi, Wy, oy W), Wi € T,-' foralli=1, ..., n}.
The language generated by T in the union mode, L, ,;,,(I'), is defined as

Limion(L) = {w: (w1, wa, ..., w,) € n-L(D),we {wz:i=1,...,n}}.
The language generated by T in the concatenation mode, L, ('), is defined as

Leond(T) = {wiwy..w,: (wy, wy, ..., w,) € n-L(1)}.
The language generated by T in the first mode, Lg(T'), is defined as
Li(T) = {wi: (Wi, wa, ..., w,) € n-L(IN)}.

General Multigenerative Grammar Systems 207

Example 1. T = (G, Gy, Q), where G| = ({S|, 41}, {a, b, c}, {S1 = aS$,, S| = a4\, 4
= bAc, A) = be}, S1), Gy = ({Ss, Ao}, {d}, {S2 —> $2da, S2 > Ao, Ay > d}, 82), 0=
{(S1, S3), (4}, A2)} is a 2-multigenerative nonterminal-synchronized grammar system.
We have 2-L(I') = {(a"b"c", d"): n 2 1}, Lyioo(T) = {a"b"¢": n 2 1} U {d": n > 1},
Leone(T) = {a"b"c"d": n 2 1}, and Ly,(T) = {a"b"c": n > 1}.

Definition 2. An n-multigenerative rule-synchronized grammar system (n-MGR) is
n+1 tuple
r = (Gla G29 vy Gm Q)a

where G; = (N,, T;, P;, S)) is a context-free grammar for eachi=1, ..., n,and Q is a
finite set of n-tuples of the form (p,, pa, ..., pn), Where p; € P;foralli=1, ..., n A
sentential #-form for n-MGR is defined as the sentential n-form for an n-MGN. Let %
= (A vi, urAsvy, ..., w,davy) and g = (uiX1Vy, UaXaVs, ..., UsX,V,) aTe two sentential r-
form, where 4; € N, u;, v;, x; € (N; L T,~)* foralli=1, ..., n. Letp: A, > x; € P; forall
i=1,..,nand (py, ps, ..., ps) € Q. Then y directly derives ¥ in I, denoted by y =
¥ - An n-language for any n-MGR is defined as the #-language for any n-MGN, and a

language generated by n-MGN in the X mode, for each X € {union, conc, first}, is
defined as the language generated by n-MGR in the X mode.

Example 2. T = (G, Gy, Q), where G, = ({5, 41}, {a, b, ¢}, {1: S| = a$,2: S, >
ady, 3: A = bAc, 4: A, — be}, 1), Gy = ({85}, {d}, {12 S5 —> $,85, 2: S, — S5, 3 S,
—d},), 0 = {1, 1), 2, 2), (3, 3), (4, 3)}, is 2-multigenerative rule-synchronized
grammar system. We have 2-L(I') = {(a"b"c", d"): n 2 1}, Lypion(T) = {a"b"c": n > 1} L
{d" n>1}, Leow(T) = {a"b"c"d": n 2 1}, and Ly (T) = {a"b"c": n 2 1},

3 Results

Algorithm 1. Conversion of n-MGN to n-MGR
o Input: -MGN T =(G|, Gy, ..., G,,, Q)
e Output: n-MGR T =(Gy, Gy, ..., G,, Q) such that n-L(I') = n-L(T)

o Method:
LetG;=(N, T, P, S;) foralli=1, ..., n, then:

§= {Ay > x, Ay > x5, ..., A, > x,): A; > x; € Pforalli=1, ..., n, and
(AI’A2>""AV1)EQ}‘

208 R. Lukds and A. Meduna

Algorithm 2. Conversion of n-MGR to n-MGN
o Input: n-MGRT =(G,, Gy, ..., G,, Q)
e Output: -MGN T =(G,,G,, ..., G,, O) such that n-L(T') = n-L(T")
e Method:
Let G;=(N, T;, P, S)) foralli=1, ..., n, then:
(_;‘i =(N;, Ts E, S)) foralli=1, ..., n, where:

N, ={<4, x> A —>x e P} U {S},
P ={4,x>>yAd>xeP,ye ()} U{Si—>yye t{Sh},
where 7; is a substitution from N; U T; to N, U T, defined as:

7(a) = {a} foralla € T;; 1(A) = {<4, x> A > x € P;} forall4 € N.

Q: {(<A|, x>, <4y, x>, ..., <A, x,,>): (A] > x;, Ay > x5, ., Ay > X,,) S Q}
VU AS) S -5 S}

Claim 1. Let T be any n-MGN, let T be any n-MGR and let n-L(T') = n-L(T). Then,
LAT)Y =LA T), for each X € {union, conc, first}.

Proof.

L Lyion(D) = {w: (W, wa, ..., w,) € n-L(D), w e{wi i=1, ..., n}} = {w: (W, wy, ...,
wy) € n-L(T),we{wz:i=1,...,n}} =L,,,,,»o,,(F).

I Leone(D) = {wiwa...wy: (Wi, Wa, ...y W) € B-L(D)} = {wiwa.. Wyt (Wi, wa, ..., W,) €
l’l-L(.l:)} :Lconc(f)~
IL Lyl L) = {wi: (w1, wa, ooy W) € =L} = {wi (w1, wa, ..., wy) € n-L(T)} =

Lﬁrst(r)
0

Theorem 1. The class of languages generated by n-MGN in the X mode, where X €
{union, conc, first} is equivalent to the class of language generated by n-MGR in the
X mode.

Proof. This follows from Algorithm 1, Algorithm 2 and Claim 1.

General Multigenerative Grammar Systems 209

Algorithm 3. Conversion of n-MGR in the concatenation mode to matrix grammar
o Input: n-MGRT = (G, Gy, ..., G,, Q)

e Qutput: Matrix grammar H = (G, M) such that L.,,(I') = L(H)

o Method:

Let G;=(N, T, P, S) foralli=1, ..., n, and let for anyj, k = 1,..., n, where j
kholds: NN N,= ;S ¢ N;. Then:

G=(N,T,P,S), where:

N=1isto (N T= s

i=1 i
P={s:5— 88,...5,} U (UE %
i=1

M= {s} O {pipa...p: (P, P2, - Pu) € O}

Algorithm 4. Conversion of n-MGR in the first mode to matrix grammar
o Input: n-MGRT = (G, Gy, ..., G,, Q)

e Qutput: Matrix grammar H = (G, M) such that L;,(I') = L(H)

e Method:

LetG;=(N, T, P, S;) foralli=1, ..., n, and let for any j, k = 1,..., n, where j
kholds: Ny Ny=; S ¢ N;. Then:

G=(N,T,P,S), where:

N={S}uN1U(0{Z:AeN,.});T= T

P= {SZ S—)SJI(Sz) h(Sn) } U Pu
(O{h(A) — h(x): A — x € P}), where / is a homomorphism from

i=2

(ONi)U(LnJE)tO L"J{Z:AeN,-} defined as: h(a) = & for all

i=2 i=2 i=2

aeL"JT[;h(A):ZforallA € ONf;

i—2 =2

M= {S} o {plﬁz...ﬁ” : (pl:pZa "'9pn) € Q}

Convention: Let p: A — x be a rule. Then, label p denotes rule #(4) — A(x).

210 R. Lukas and A. Meduna

Algorithm 5. Conversion of n-MGR in the union mode to matrix grammar
e Input: -MGRT =(Gy, Gy, ..., G,, Q)

e Ouitput: Matrix grammar H = (G, M) such that L,,;,,(I') = L(H)

e Method:

Let G;=(N, T, P, S;) forall i =1, ..., n, and let for any j, k = 1,..., n, where j
kholds: Ny Ny=; S ¢ N,. Then:

G=(,T,P,S), where:

i
i=1

N=A8S} O (N O ((Jdae vy T= ;s

P={ 518> Sih(S))... h(S,), 52: S = h(S)Ss... K(S,), ...
St S = hSDA(S,)... Sy} U

(Ur) Y (Jth(4) - h(x): 4> x e B})> Where h is a
i=1 i=1
homomorphism from (ONi) U (L"JT:') to U{Z;A eN}
i=l i1 i1

defined as: h(a) = ¢ for all a GL"JT; h(A) = A4 for all

i=1
Ae L"JNI' ;
i=1

M= {s1,55 .., Su} VA p, Py B, (P1> P2 -5 Pn) € O}
v {ﬁ1p2"'ﬁn: 1, P2 -~) € O}
U...

VAP Dy-p,: (P> P2 -5 Pn) € O

Theorem 2. For every n-MGR in the X mode, where X € {union, conc, first}, there is
an equivalent matrix grammar.

Proof. This follows from Algorithm 3, Algorithm 4 and Algorithm 5.

General Multigenerative Grammar Systems 211

Algorithm 6. Conversion of matrix grammar to 2-MGR
e Input: Matrix grammar H = (G, M); string w e T, where T is any alphabet
e Output: 2-MGRT =(G,, Gy, Q); {wi: (wy, w) € 2-L(I} = L(H)
e Method:
Let G=(N, T, P, S), then:
G, =G
Gr=(N,, Ty, Py, S,), where:
No= {8} U {<ppo. poo > P12 pr € M1 <j<k-1}; T,=T;
Py ={S:—> <ppr.pu 1> pipa..pre M,k 22} L
{<p1D2w Pio ™ —> <P1P2 Pio Jt 1> pipa pre My k22,1 <j<k-2}} U
{<p\p2-o- Pi k1> > Sy pipae.pr e My k22} L
{S> SupreMp|=1}u
{<p\p2-e- P k1> > W ppa..pre€ M, k22} L
{S2—> Wipre M |p|=1};
O=A{(p, 2> <P\p2-. P 1>): pip2.pre My k22} L
{js1, P12 P JZ = P02 P JH1Z) i pipae pre M k22, 1 < k-2} L
{(ors <P P2 Pi k=1> > S2): pipae. pr€ M,k 22} L
{(P1, 2> S):preM p|=1} v
{po<pp2 P k-1>> W) pipr.pre M k=2 U
{p,S2 > w):preM, |p|=1}.

Claim 2. For every matrix grammar H, there is an equivalent 2-MGR in the
concatenation mode.

Proof. Use Algorithm 6 with matrix grammar H and w = ¢ in the input.

Claim 3. For every matrix grammar H, there is an equivalent 2-MGR in the first
mode.

Proof. Use Algorithm 6 with matrix grammar H and any string w € 7" in the input.
0

212 R. Lukd$ and A. Meduna

Claim 4. For every matrix grammar H, there is an equivalent 2-MGR in the union
mode.

Proof. Use Algorithm 6 with matrix grammar A and w in the input, where w is any
string in L(H), provided that L(H) is nonempty. Otherwise, w is any string.
g

Theorem 3. For every matrix grammar, there is an equivalent 2-MGR in the X mode,
where X € {union, conc, first}.

Proof. This follows from Claim 2, Claim 3 and Claim 4.

3 Conclusion

Let £(n-MGNy) and £(n-MGRy) denote the language families defined by n-MGN in

the X mode and n-MGR in the X mode, respectively, where X € {union, conc, first},
let £(H) denote the family of languages generated by matrix grammars. From the

previous results, we obtain:
o [(H)=L(i-MGNy),iz=2.
e [(H)=L(i-MGRy),i=2.

References

1. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A Grammatical
Approach to Distribution and Cooperation, Gordon and Breach, London (1994)

2. Dassow, I., Paun, Gh., and Rozenberg, G.: Grammar Systems, In Handbook of Formal
Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer, Berlin (1997)

3. Harrison, Michael A.: Introduction to Formal Language Theory. Addison-Wesley, London
(1978)

4. Meduna, A.: Automata and Languages: Theory and Applications, Springer, London
(2000)

5. Meduna, A.: Two-Way Metalinear PC Grammar Systems and Their Descriptional
Complexity, Acta Cybernetica (2003) 126-137

6. Paun, Gh., Salomaa, A. and S. Vicolov, S.: On the generative capacity of parallel
communicating grammar systems. International Journal of Computer Mathematics 45,
(1992) 45-59

7. Salomaa, A.: Formal Languages, Academic Press, New York (1973)

8. Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems,
Theoretical Computer Science (209) 1-2 (1998) 319-329

