
Notes on Restricted P Colonies

Lucie Ciencialovd,l and Ludek Ciencialal

Institute of Computer Science, Faculty of Philosophy and Science, Silesian University
in Opava, Czech Republic

luc ie . c ienc ia lova@fof . s1u. cz

Abstract. We continue the investigation of P colonies introduced in [7],
a class of abstract computing devices composed of independent agents,
acting and evolving in a shared environment. We determine the gener-
ative power of P colonies with one resp. two objects inside each agent
owing some special restrictions to the number of agents and type of pro-
grams.

I{eywords: P colony, membrane systems, generative power.

Introduction

P colonies were introduced in the paper [6] as formal models of a computing
device inspired by membrane systems and formal grammars called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent
is represented by a collection of objects embedded in a membrane and rules for
processing these objects. The number of objects inside the agent is the same for
each of them. The environment contains several copies of the basic environmental
object denoted by e.The number of the copies of e is unlimited.

With each agent a set of programs is associated. The program determines
the activity of the agent. Each program consists of the same number of rules
as the number of the objects inside the agent. In every moment all the objects
inside of the agent are being evolved (by an evolution rule) or transported (by
a communication rule). The third type of the rules is checking rule. This type of
the rules sets the priority between two communication rules.

The computation starts in the initial configuration when all agents and envi-
ronment contain copies of the environmentai object e.By using their programs
the agents change themselves and by the environment they can affect the behav-
ior of the other agents. In each step of the computation each agent nondetermin-
istically chooses one of its applicable programs and executes it. The computation
halts when no agent can apply any of its programs. The result of the computa-
tion is the number of some specific obiects prescnt at the environment at the end
of the computation.

In [4,6,7] the authors study P colonies with two objects inside agents. In this
case programs consist of two rules. If the former of these rules is evolution and

1 8 0 L. Ciencialova and L. Cienciala

the latter is communication or checking, w€ talk about restricted. P colonies. If we
allow also another combination of the types of the rules, we obtain non-restricted
P colonies. The restricted P ccionies with the checking rules are computationaily
complete [3, 4] .

In the present paper we show that restricted P colonies without checking
ruies and two agents can also generate any recursively enumerable set of natural
numbers working in maximally parallel way. We also show that computational
power of P colonies with one object inside the agent can simulate the partially
blind register machine.

Definit ions

Throughout the paper we assume the reader to be familiar with the basics of lan-
guage theory.

!!-e use IV RE to denote the family of recursively enumerable sets of natural
numbers. Let D be the alphabet. Let E* be the set of all words over I (including
the empty rvord e). We denote the length of the word u € D" by lull and
the number of occurrences of the symbol a € D rn w by l r l " .

A multiset of objects &1 is a pair IuI(V,/), where I/ is an arbitrary (not
necessarily f inite) set of objects arrd / is a mapping,f : V ---, I{; f assigns
to each object in 7 its multiplicity in IuI .The set of ail multisets with the set of
objects 7 is denoted by Vo. The set V' is called the support of fuI and d.enoted by
supp(tul) if for all r € \- ' f (r) 10. The cardinality of IuI, d.enoted by card,(fu|),
is defined by card(IuI) : Loev f @). Any multiset of objects .0,/ with the set of
objects V: {at , . .en} can be represented as a str ing u over alphabet V with
lwlo, : f @o); 1 < i S n. Obviously, a l l words obtained from u. ' by permut ing
the letters can also represent .&1, and E represents the empty multiset.

2. ! P Colony

trVe briefly recall the notion of P colonies.
The P colony consists of agents and environment. Both agents and environ-

ment contain objects. With every agent the set of progranr is associated. There
are two kinds of rules in programs. The first type called evolution is in tire form
a --' b. It means that object a inside of agent is rewritten (evolved) to object b.
The second type of rules can be called communication and they are in the form
c ''-' d. When this rule is performed, the object c inside and the object r/ outsicle
of the agent change their places, so d is now inside and c is outside of the agent.

In [61 the ability of agents is extender] by checking programs. They give to
the agents the opportunity to opt between two possibil i t ies. These rules have
fbrm c *' d/c' *-, d' . If the checking rule is performed., the communication rule
c *-- d has higher prioritv to be executed as the rule c' *-- d,'. It means that
the agent chccks the possibility of using the rule c r-, d, (it tries to find ob.ject c
inside of itself and the object d in the environment). If this rule can be executed.
the agent nrust use it. If the first rule cannot be applied, the agent uses the second
one c' *-. d'.

Notes on Restricted P Colonies l 8 l

Definition 1. The P colonA of the capac'ity k is a construct
A : (A , e , f , V p , 8 r , . . . , B , *) , w h e r e

- A is an alphabet of the colony, 'its elements are called objects,
- e € A i,s the bas'ic object of tlr.e colony,
- f e A is the final object of the colony,
- V6 ' is a multiset ouer A - {"},
- Br, 1 (i 1 'n, are agents, each agent ' is a construct Bt : (On,P') , where

. Oi is a multiset ouer A, it deterrnines the znit'ial state (content) of the

a g e n t , l O r l : k ,
. Pr - {po,r , . . . ,p i ,k i } is a f in i te set of programs, where each program

contains eractly k rules, whi,ch are 'in one of the follow'ing forms:
* a -+ b, th,ese rules are called euolut'ion rules,
* c e d, these rules are called commun'icat'ion rules,
* c €+ df c' * d' , which, are called checking rules.

An init ial configuration of the P colony is (n * 1)-tuple of strings of objects
present in the P colony at the beginning of the computation, it is given by Oi for

I S i ,S n and 76. Formal ly, the conf igurat ion of P colony 11 is (r-u1,. . . ,un,wn),

where lrrl : k, 1 < i I n, uri represents all the objects placed inside the i-th

agent and up € @- {r}). represents all the objects in the environment different

from e.
The computation can be done in two different ways in a parallel and in

a seqrrential way. At each step of the parallel computation each agent tries to find

one program to use. If the number of applicable programs is higher than one, the

agent nondeterministically chooses one of them. At one step of computation the

maximal number of agents works. On the other hand at each step of sequential
computation only one agent can use its program.

Let the programs of each P1 be labeied in a one-to-one manner by labels in

a s e t l a b (P 1) i n s u c h a w a y t h a t l o b (4) n l a b (P i) : A f o r i t ' j , , I < i , j 1 n .

For a rule r and a muitiset u e V" we can define:

(t e | t (r , w) : s

r : (a - - - b) * I
r i s h t (r ' w) : 6

1 erPort(r ' u) : 6
' : (" *- ' d) =+

l i rnpor t (r ,w) : E

r i , g h t (r , w) : g

erpor t (r ,w) : s
import (r ,w) : 4

(le f t (r , .) : r i ' gh t (r ,w) - E

I ernort (f,r i : .. \ i f d. e w
, : (" * - , c l l c ' - r d ') =+ { impor t (r , .) - d I

| "w*t
(: ' ' i : c ' . , \ t t , (w and, cI ' e w

I import (t , r) : d' I
For a program p and any a e {left,right, erport,i 'mport}, let

A rranst,"" f;il T).;!;il;,[fJ; another is denotecr as
(r r , . . . , 1 1) n . , * d + @ ' t) . . .) w ' n , w ' n) , r v h e r e t h e f o l l o w i n g c o n -

ditiorrs are satisfied:

- There is a set of program labels P with lltl S n such tllat

1 8 2 L. Ciencialova and L. Cienciala

. p , p ' e P , p * p ' , p € lab(P i) imp l ies p ' (lab(P i) ,
o fo r each p € P , p e Lab(P i) , le f t (p , - ") U erpor t (p , - ") : u) j , and

Uo.r impo'r t (p, .u) e wn.
- Furthermore, the chosen set P is maximal, that is, if an;' other program

r € Ur Sr.<r lab(Pn), , f P, rs added to P, then the condi t ions above are not
satisfied.

Now, fo r each j ,L < j Sn , fo r wh ich there ex is ts ap € P w i th p€ lab(P i) ,
le t w ' , : r igh t (,p , *n)u impor t (p , *n) . I f there is no p € P w i th p e lab(P1)
for some j, t < j { n, then let ,'j : ?rr; and moreover, let

u'E : wB - l) impo'rt (p,up) u N erport (p,,ra) '
r : - p e P

A confi.guration is halting if the set of program labels P satisfying the con-
ditions above cannot be chosen to be other than the empty set. With a halting
computation we can associate a result of the computation. It is the number of
copies of the special symbol / present in the environment. The set of numbers
computed by a P colony' 11 is defined as

A - (1 1) :
{ l r r l , I (r r , . . . , w n , V n) * . (r , , . . . , u n r r) } ,

w h e r e (r , , . . . , u n , V n) i s t i r e i r r i t i a l c o n f i g u r a t i o n , (u 1 , . . . , u n , u a) i s a h a l t i n g
configuration, and =+* denotes the reflexive and trl,nsitive closure of =+.

Because of nondeterminism in a computation of the P colony, we can obtain
more tha.n one halting computation. Hence what we associate with P colony 11
is a set of natural numbers denoted by ,n/(il) computed by all possible haiting
computations of 11.

Given a P co lony I I : (A , e) f , Vo , 8 r , . . . , Br) the max imal number
of programs associated with the agents in P colony I1 is called the height of
P colony I/. The degree of P colony II is the number of agents in P colofty n.
The third parameter characterizing a P colony is the capacity of P colorry n
describing the number of the objects inside each agent.

Let us use the following notations:
McoLnar (k ,n ,h) - the fami ly o f a l l se ts o f numbers A* (/7) computed by
P colonies working in parallel way with: - the capacity k,

- the degree at most n and
- tlie height at most h
- without using checking rules.

If we allorv checking rules the family of all sets of numbers computed by P colonies
is derroied by !{PC'OLparK.If the P colonies are restricted too, we change
notation to !{ PCOLT',R or I{ PCOL,',K R.

2.2 Register Machines

In this work we want to characterize the size of the larnil ies i{PCOLpo,(k,'n,h)
comparing them rvith the recursively enumerable sets of numbers. To achieve
this aim we need the notion of a register machine.

Notes on Restricted P Colonies 1 8 3

Definit ion 2. [S] A register mach'ine i,s t lte construct M : (*,H,ls,lh,P)

wh,ere: - m 'is the number of registers,
- H is the set of instruct'ion labels,
- ls i,s the initi,al/start label, 16 i,s the final Label,
- P is a finite set of instructions i,njectiuely labeled with the elements

from the giuen set H.

The instruction of the register machine are of the following forms:
ly: (ADD(r) , lz ,13) Add 1 to the contents of the register r and proceed to the

instruction (labeled with) 12 or 13.

\ : (SUB(r) , l r ,13) I f the register r is not empty, then subtract l f rom i ts con-
tents and go to instruction 12, otherwise proceed to instruc-

1 6 : H A L T
t ion 13.
Stop the machine. The final label ln is only assigned to this
lnstructron.

Without loss of generality, one can assume that in each ADD-instruction
ly : (A(r) , l z , l z) and in each SUB- ins t ruc t ion 11 : (5 (r) , l z , l s) the iabe ls \ ,12 ,13
are mutually distinct.

The register machine fuI computes a set ,^/(/l/) of numbers in the following
way: we start with ail registers empty (hence storing the number zero) with the
instruction with label ls and we proceed to apply the instructions as indicated
by the labels (and made possible by the contents of registers). If we reach the
halt instruction, then the number stored at that time in the register 1 is said
to be computed by M and hence it is introduced in .n/(&/). (Because of the
nondeterminism in choosing the continuation of the computation in the case of
ADD-instructions, N(M) can be an infinite set.) It is knorvn (see e.g [7]) that
in this way we can compute all sets of numbers which are Turing computable.

ivloreover, 'ive cail a register machine partiaily lrlind [5], if we interpret a sub-
tract instruct ion in the fo l lowing way: \ : (S(r ') ; lz ; lz) - i f register r is not
empty, then subtract one from its contents and go t,o instruction 12 or to instruc-
tion 13; if register r is empty when attempting to tlecrement register r, then the
program ends without yielding a result.

When the register rnachine reaches the final stirte, the result obtained in the
first register is only taken into account if the rernaining registers are empty.
The family of sets of non-negative integers generat,e'd by partially blind register
machines is denoted by N RIuIpa. The partially blind register machine accepts
a proper subset of .n/ftE.

3 On computational power of restricted P colonies
Without Checking

The next results were proved to be true:
- N PCOLe,,K R(2, *,5) : Ir{ RE in 12,71,
- MCOL,* ,R(2 , * , 5) : IV PCOLpo,K R(2 , 1 , *) : I ' { RE in [+] ,
- M C O L e o , (| , * , 7) : I { R E i n [1] ,
- NPCOLeo,(L,4, *) - I /R.O in 11],

r 8 4

3 . 1

L. Ciencialova and L. Cienciala

P colonies With Two Objects

2 : (e > a7 - ;11 * - e) .

3 : (e - - G ; a , * l t) ,

4 : (1 1 - l ' z , G * - e) ,
5 : (11 --+ le)G *-, e)

Theorem 1 . lV PCOLpo,R(2 ,2 .x) : ^ l RE.

Proof. Let us consider a register macliine ,4,1 rvith rn registers. W-e construct
a P colony II : (A,", f ,V", Bt, Bz) sinrulating a cornputation of register macirine

r U w i t h : - A : { G } U { L r , L ' o , l ' o ' , 1 ' r " , 1 ' ; " ' , h , h , L r . ! i , L r , L ' i , L ' i ' , F r I l o € H } l)

U {o ' " I I < r < m} ,
- f : a r '
- B j : (O i , P i) , 0 1 : { " , " } , j : L , 2

At the beginning of thc computation thc first agcnt gencrates the ob.jcct ls (the
Iabel of starting instruction of ,&1). Then it starts to simulate instruction labeled
ls and generates the label of tire next instruction. The sets of programs are as
follows:

(1) For init ializing of the simulation there is one program in P1:
L : \ e - - + L o i e ? + e)

The init ial configuration of I/ is (ee, ee,e). After the first step of computation
(only the program 1is appl icable) the system enters conf igurat ion (/se, ee,e).

(2) For every ADD-tnstruct ion ly: (ADD(r) ,12, 13) we add programs to P1:

lVhen there is object 11 inside the agent, it generates one copy of a,, puts it to
the environment and generates the label of the next instruction (it nondetermin-
istically chooses one of t"he last two programs 4 and 5)

configuration of 11

Br 82 Enu P^P1

1
o

;.)
r!

I t e e e a i
ar€ ee lpf ,
Gh ee of+ |

l ze ee o f * t G

2
,
t)

4 o r 5

(3) For every SUl3- instruct ion 11 : ISLIB(r) , lz ,13) there are subsets of pro-
granls in Pt and P2:

Programs in Pr Programs in Pr Programs in P2

At thc first pha^sc of simrrlation of thc SU B instnrction the first agent gcncr-
ir tes r- ibject l \ , whici i is consunred bv the sccond agcnt. The agent 82 generates
sv-mbol 11 and tr ies to consurle one copy of symllr.r l or. I f there is any a,., the
agent sends to the e'nvironment object L' l and consltrnes I1. The f irst agent afber

configuration of 11

81 82 Enu P1 Pz
1
2
3
A=
5
6
7
I

8

9

I te ee at r
L'r" ee af
l ' i " ee l \"f
l ' l '" LJ\ l ' i"f
l '1"

"
L\l '{ Lpf

ie L' lo, L1L'1af;- l
:
he eLt L ' la f - r

lzL' i ee al-I
Lze ee af ; - r lz

o

7
8 1 8
9 1 9
10 20
i 1 2 l

L2 22
1 A
I I

Notes on Restricted P Colonies 1 8 5

this step consumes L'l or.L1 and rewrites it to 12 or 13. The objects lt, 16 and

l,; ur. for a synchronization of the computation in both agents and for storing
informations about the state of the computation.

An instruction 11 : (SUB(r),lz,ls) is simulated by the following sequence
of steps.

If the register r is empty: If the register r is not empty:If the register r is not empty:
configuration of I/

81 82 Enu P1 Pz
Lf ee
(r" ee

li" ee l'r

l'L'" LJI I'i
(1"

"
L'tl ' i Lr

ie L\I ' i Ly
:
I f L\t ' i L1

tzL t L \ t i
Fse L'tl'i lJ

W L\t'{ J?3

Ise Fse bf;

?? ee lsL't

6
7
B 1 8
9 1 9
10
1 1

13
1 5
16
17 23

2 o r 6 2 4
or none

() For the halting instruction 17, there is no program neither in the set P1
either in the set P2.

It is easy to see that the P colony 11 correctly simulates any computation
of the register machine IUI and the number contained on the first register of fuI
corresponds to the number of copies of the object o1 pr€s€rted in the environment
of II. The rest of the proof follows by the Church-Turing thesis and by the
computational universality of the register machine. n

3.2 P Colonies With One Object

T h e o r e m 2 . M C O L , , ' , R (I , 2 , *) 1 I { R I u I e a .

Proof. Let us consider a register machine /l,/ with m registers.
a P co lony I I : (A ,e , f ,Vp ,Bt ,Bz) s imu la t ing a computa t ion
machine .4,/ with:

- A - { J , J ' , V , Q } U { l n , l i , I ' r ' , L t , L ' r , L ' n ' , E n l l t e H } U { o , | 1
- f : a t ,
- B t : (O r , P r) , O i : { " } , 1 : I , 2

The sets of programs are as follows:
(1) For init ializing the simulation:
P t : P r :

2 : (J < - e l , 4 : (Q - Q) ,

\Are construct
of the register

S r / - m j ,

P z :
5l-G --T;
6
7 : (J ' * * e)

186 L. Ciencialova and L. Cienciala

At the beginning of computation the first agent generates the object ls (the label
of starting instruction of lvf).It generates some copies of object J. The agent
82 exchange them by J'.

(2) For every
p.

r _ t

ADD-instruct ion \ : (ADD(r) ,Lz, ls) P1 and Pz contain:
P . .

8 : \ 1 1 - l ' r) ,
9 : (L ' t * J ') ,

1 0 : (L ' r - Q) ,
11 : (J ' * L ' l) ,
12 : (L' i -- L|) ,
13 : (L l - L r) ,

1 4 : (I , * E t) ,
1 5 : \ L t - Q) ,
1 6 : (E 1 - - l ;) ,
L 7 : (E r * l s) ,

P z :

w
19 : (l ' t - Et) ,
2 0 : (E t * e) ,
2 1 : \ e r - L 1) ,
2 2 : (L t - a ,) ,
2 3 : \ a " * e)

When there is object 11 inside the agent Bi, the agent rewrites it to one copy
of l" and the agent sends it to the environment. The agent 82 borrows -81 from
the environment and giv,:s a little altered (to .ei) back.

The agent 81 r€rA'rites the object J' to some L;. We have to generate it in
three steps to wait till the second agent generates the symbol E'n and places it to
the environment. If this.Ll has the same index us E: placed in the environment,
the computation can go to the next phase. If the indices of La and Ei are different,
the agent 81 generates Q and computation wil l never stop. If the computation
gets over this checking step, 81 generates object 12 or ls.

configuration of //
Br 82 Enu P2P1

l .

2 .
3 .
l+ .

5 .
o .
7 .
8 .
9 .
1 0 .

I l

J,
l l, 1

L t l

r -
u \

aT

l r e
I ' r e

J C
f t t I l

" l " i

L', E1
r ^

L T E

E1 e
l rL 2 t I
.)
! (1,
,
t P

8
9 o r 1 0

1 1 1 8
t 2 1 9
13 20

7 4 o r L 5
1 6 o r L T 2 l

8 o r 2 4 o r 3 4 2 2
9 or 25 o'r 35 23

(:3) For every S[/B-instruction \ : (St-l B (r) , lz, 13) there are subsets of programs
irr P1 and -P2:

corrfiguration of 11

81 82 Enu

e e
T ^

J C

e e
I f

U U

Ls J'
o(t)

6
7

I
2 o r 3

1
2 o r 3

8 o r 2 4 o r 3 4

Notes on Restricted P Col,nties 187

P r : P t :
24: (11 --- l '{) , 28 : \V ,-+ li ') ,
25 : (l'l *- a,) , 29 : (l'l' --+ 12) ,
26: \l ' i - Q) , 30 : \l ' i ' -, ls) ,
2 7 : \ a , - V) ,

In the first step the first agent checks if there is any copy of. a, in t,he environ-
ment (whether register r is not empty). In the positive case it rewrites a, toV,
in the other case l'1 is rewritten to Q and the computation will ncver halt. At
the end of this simulation the agent .B1 generates the object 12 or 13.

configuration of 11

81 82 Enu

1
2
3
4

1 1 e

t'{ e
Ae
Ae

P z :
sTllf';;;
32: (l ' i --- l '{ ') ,
33 : (l'i' +* e)

bhe sets P1 and P2:

configuration of I/

81 82 Enu P1 P2
1
2
3
A
a

^

6
7
8

0 1

l i lu 1

ar

V
e

I t l! 1

l i l tb l

e

ar

a.r
l l l
L y

V
V
l i l t0 1

l z

l t t lL 1

24
25 or 26

27 31
32
33

28
29 or 30

(4) For the halting instruction

P t :

W
3 5 : (J ' - L n) ,
3 6 : (l n * Q) ,
3 7 (L n - L n) ,
38 : (Ln --.Ti) ,

16 there are programs in

P z : P z :
3 9 : (e * . 1 7) ,
40 : (tn --Ti) ,
4 7 : (l n *

") ,4 2 : (t * ' L n) ,

43 : \Ln * a ,) ,
44 (a, +* e)

l < r < r n

By using this program, the P colony finishes computation as well as the par-
tially blind register machine halts its computation. The last two prollrams in the
sequence of P2 are to control if the registers except the first one ar(f empty.

i f all counters ",1<'<rn
d,rQ empt.v

configuration of 11

81 82 Enu P2P1
-l
I

2
o
.l

A
T

5
6
"7
I

1 6 e J '
J ' e l n
L6 L6
Ln C'
Ls e h
T ; e L n
nL6

34 or 36
35 39
37 40
37 4L
3B

42

i f some counter r ,1(rSrn is r ronempty

configuration of I/

81 82 Enu P2P1

1
2
3
4
5
6
,7
a

8
q

17 e J 'a,
Jt €. I6a7

Ln 16 a,
L6 T; er
Ly e ha,
1,1, € l :6A7

n L 6 a r
t f

Lt Ar l ' 1,

T; L6 a,.

34 rry 36
:i5
,,-,
,) I

: t7
' :

39
40
4T

42
43
44
43

188 L. Ciencialovd and L. Cienciala

It is easy to see that tire P colony 11
of the partially biind register machine &1.

correctly simulates any computation

Conclusions

lVe have sho'uvn that the P colonies with capacity k : 2 and without checking
programs with height at most 2 are computationally complete. In the next part
of this strrdy lvc ha,vc vcrificd that P colonics with onc ob.jcct inside thc agcnt
and without checking programs can simultr,te partially blind register machine.

Activities carried out in the field of membrane compr-rting are currently nu-
merous and avzrilable at [11].

Tlh,s work has been supported by the Grant Agency of Czech Republic Arants IVo.
201/06/0567 "Bioinformatika a biouypoity: souu'islosti, modely, aplikace" and
bu IGS SU i.s2/2007.

References

1. Ciencialov6, L., Cienciala. L.: Variat ions on t l te theme: P Colonies, Proceedings
of 1"1 International workshop WFIVI06 (Kol, D., Medun&, A., eds.),Ostrava, 2006,
pp.27-34.

2. Csuhaj-Varjt i , E.. Kelemen, J., Kelemenova, A., Paun, Gh., Vaszi l , G.: Cells in
enuironment: P colon' ies, lvlult iple-valued Logic and Soft Computing,72,3-4, 2006,
pp . 201 -215 .

3. Csuha.j-Var.jri, E., \Iargenstern, M., Vaszil, G.: P Colonies wi,th a Bounded l'{umber
of CeLls and Prograrns. Pre-Proceedings of the 7th Workshop on Membrane Com-
pubing (Hendr ik Jan Hoogeboom. H. J . , PXun, Gh. , Rozenberg, G. eds) , Le iden.
The Netherlands, 2006. pp. 317-322.

4. Freund, R., Oswald, N'1.: P colonzes working in the marimaLLg paraLlel and in the se-
quentiaL rnode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. PXun, eds), Timisoara, Romania, 2005.
pp. 49-56.

5. Greibach, S. A.'. Rernarks on bli,nd and part'iallg blind one-waA multicounter ma-
ch' ines. Theoretical Computer Science, 7(1), 1978, pp. 31I-324.

6. Kelenretr,J., Kelemeuov6, A.: On P Colon' ies, a b' iochernical ly inspired fulodet
of Computation. Proc. of the 6th International Symposium of Hungarian Re-
searchers on Compr"rtational Intelligence, Budapest TECH, Hungary, 2005, pp.
40-56.

7. Kelemetr, J., Kelemenov6, A., Pdun, Gh.: Preui,ew of P colonr,es: A Biochertzcal ly
lnspired Computing fuIodel. Workshop and Tutorial Proceedings, Ninth Interna-
t ional Conference on the Simulation and Synthesis of Living Systems, ALIFE IX
(N1. Bedau at al. , eds) l3oston, Nlasss, 2004, pp. 82--86.

8. Nlinsky, \,I. [,.: Con-r,putaLion Finite and Infinite ivtachines. Prentice Hall, Engle-
rvood Cli f fs, NJ. 1967

9. PXun, Gh.: Comput'ing w'ith membranes. Journal of Computer and System Sciences
61,2000, pp. 108-143 and TUCS Research Repor t No 208, Turku, 1998.

10. Pdun, ()h.: IvIe'mbrane computing: An introduction. Springer-l 'er lag, Berl in,2002.
1 1 . P systeurs web page: l r t tp : / /psystems.d isco.un imib. i t

