Notes on Restricted P Colonies

Lucie Ciencialova! and Ludék Ciencialat

Institute of Computer Science, Faculty of Philosophy and Science, Silesian University
in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

Abstract. We continue the investigation of P colonies introduced in [7],
a class of abstract computing devices composed of independent agents,
acting and evolving in a shared environment. We determine the gener-
ative power of P colonies with one resp. two objects inside each agent
owing some special restrictions to the number of agents and type of pro-
grams.

Keywords: P colony, membrane systems, generative power.

1 Introduction

P colonies were introduced in the paper [6] as formal models of a computing
device inspired by membrane systems and formal grammars called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent
is represented by a collection of objects embedded in a membrane and rules for
processing these objects. The number of objects inside the agent is the same for
each of them. The environment contains several copies of the basic environmental
object denoted by e. The number of the copies of e is unlimited.

With each agent a set of programs is associated. The program determines
the activity of the agent. Each program consists of the same number of rules
as the number of the objects inside the agent. In every moment all the objects
inside of the agent are being evolved (by an evolution rule) or transported (by
a communication rule). The third type of the rules is checking rule. This type of
the rules sets the priority between two communication rules.

The computation starts in the initial configuration when all agents and envi-
ronment contain copies of the environmental object e. By using their programs
the agents change themselves and by the environment they can affect the behav-
ior of the other agents. In each step of the computation each agent nondetermin-
istically chooses one of its applicable programs and executes it. The computation
halts when no agent can apply any of its programs. The result of the computa-
tion is the number of some specific objects present at the environment at the end
of the computation.

In [4,6,7] the authors study P colonies with two objects inside agents. In this
case programs consist of two rules. If the former of these rules is evolution and

180 L. Ciencialovad and L. Cienciala

the latter is communication or checking, we talk about restricted P colonies. If we
allow also another combination of the types of the rules, we obtain non-restricted
P colonies. The restricted P colonies with the checking rules are computationally
complete {3,4].

In the present paper we show that restricted P colonies without checking
rules and two agents can also generate any recursively enumerable set of natural
numbers working in maximally parallel way. We also show that computational
power of P colonies with one object inside the agent can simulate the partially
blind register machine.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of lan-
guage theory.

We use NRE to denote the family of recursively enumerable sets of natural
numbers. Let X be the alphabet. Let £~ be the set of all words over X (including
the empty word £). We denote the length of the word w € X* by |w| and
the number of occurrences of the symbol a € X in w by |wl, .

A multiset of objects M is a pair M(V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V — N; f assigns
to each object in V' its multiplicity in M. The set of all multisets with the set of
objects V is denoted by V°. The set V" is called the support of M and denoted by
supp(M) if for all z € V7 f(z) # 0. The cardinality of M, denoted by card(M),
is defined by card(M) = 3~ .\ f(a). Any multiset of objects M with the set of
objects V' = {a;,...an} can be represented as a string w over alphabet V with
lwl,, = fla;); 1 <7 < n. Obviously, all words obtained from w by permuting
the letters can also represent M, and ¢ represents the empty multiset.

2.1 P Colony

We briefly recall the notion of P colonies.

The P colony consists of agents and environment. Both agents and environ-
ment contain objects. With every agent the set of program is associated. There
are two kinds of rules in programs. The first type called evolution is in the form
a — b. It means that object a inside of agent is rewritten (evolved) to object b.
The second type of rules can be called communication and they are in the form
¢ <> d. When this rule is performed, the object c inside and the object d outside
of the agent change their places, so d is now inside and c is outside of the agent.

In [6] the ability of agents is extended by checking programs. They give to
the agents the opportunity to opt between two possibilities. These rules have
form ¢ < d/c « d'. If the checking rule is performed, the communication rule
¢ « d has higher prioritv to be executed as the rule ¢’ « d’. It means that
the agent checks the possibility of using the rule ¢ « d (it tries to find object ¢
inside of itself and the object d in the environment). If this rule can be executed,
the agent must use it. If the first rule cannot be applied, the agent uses the second
one ¢ « d’.

Notes on Restricted P Colonies 181

Definition 1. The P colony of the capacity k is a construct
II = (Ae, f,Vg,B1,...,Bn), where

— A is an alphabet of the colony, its elements are called objects,
— e € A is the basic object of the colony,
f € A is the final object of the colony,
— Vg is a multiset over A — {e},
— B;, 1 <i<n, are agents, each agent is a construct B; = (0;, P;), where
e O; is a multiset over A, it determines the initial state (content) of the
agent, |0;| =k,
o P = {pi1,..-,Dik;} is a finite set of programs, where each program
contains ezactly k rules, which are in one of the following forms:
x a — b, these rules are called evolution rules,
x ¢+ d, these rules are called communication rules,
* ¢ d/c & d, which are called checking Tules.

An initial configuration of the P colony is (n + 1)—tuple of strings of objects
present in the P colony at the beginning of the computation, it is given by O; for
1 <1 < nand Vg. Formally, the configuration of P colony IT is (wy, . .., Wn, WE),
where |w;| = k, 1 < i < n, w; represents all the objects placed inside the i-th
agent and wg € (A— {e})* represents all the objects in the environment different
from e.

The computation can be done in two different ways in a parallel and in
a sequential way. At each step of the parallel computation each agent tries to find
one program to use. If the number of applicable programs is higher than one, the
agent nondeterministically chooses one of them. At one step of computation the
maximal number of agents works. On the other hand at each step of sequential
computation only one agent can use its program.

Let the programs of each P; be labeled in a one-to-one manner by labels in
a set lab (P;) in such a way that lab(P;) Nlab(P;) =0 for i # j, 1 <i,j < n.

For a rule r and a multiset w € V° we can define:
left(r,w) =a left(r,w)=¢
right (r,w) =b right (r,w) = ¢
export (r,w) =¢€ export (r,w) = ¢
import (r,w) = ¢ import (r,w) = d

left (r,w) = right (r,w) = ¢
export (r,w) =c | . ,
r=(ced/d —d)= import(r,w):d}lfdew
.
f;’;‘zft((';:f;)) S }if d¢wand d €w
For a program p and any « € {left, right, export,import}, let
a(p,w) = Urepa (r,w).
A transition from a configuration to another is denoted as
(wiy..., Wy, wg) = (W,...,w,,wy), where the following con-
ditions are satisfied:

r=(a—b)= r=(ced) =

— There is a set of program labels P with |P! < n such that

182 L. Ciencialova and L. Cienciala

ep, p €P,p#p, pe lab(P;) implies p’ ¢ lab(F;),
o for each p € P, p € lab(P;), left(p,wg) U export (p,wg) = w;, and
U, ep import (p,wg) C wg.
— Furthermore, the chosen set P is maximal, that is, if any other program
r € Ui<i<nlab(P;), r ¢ P, is added to P, then the conditions above are not
satisfied.

Now, for each j, 1 < j < n, for which there exists a p € P with p € lab (P;),
let w) = right (p,wg) U import (p, wg) . If there is no p € P with p € lab (F;)
for some j, 1 < 7 < n, then let w;- = w; and moreover, let

wy =wg — |J import (p,wg) U |J export (p,wg).
pEP peP

A configuration is halting if the set of program labels P satisfying the con-
ditions above cannot be chosen to be other than the empty set. With a halting
computation we can associate a result of the computation. It is the number of
copies of the special symbol f present in the environment. The set of numbers
computed by a P colony IT is defined as

N(IT) = {|UE|J,. | (wi,... wn, Ve) =" (vl,...,vn.vE)},
where (w1, ...,wn, V&) is the initial configuration, (vi,...,vs,vg) is a halting
configuration, and ="* denotes the reflexive and transitive closure of =.

Because of nondeterminism in a computation of the P colony, we can obtain
more than one halting computation. Hence what we associate with P colony 17
is a set of natural numbers denoted by N(II) computed by all possible halting
computations of /7.

Given a P colony IT = (A, e, f, Vg, B1, ..., B,) the maximal number
of programs associated with the agents in P colony II is called the height of
P colony I1. The degree of P colony IT is the number of agents in P colony II.
The third parameter characterizing a P colony is the capacity of P colony II
describing the number of the objects inside each agent.

Let us use the following notations:

NPCOLyqr(k,n,h) - the family of all sets of numbers N(II) computed by
P colonies working in parallel way with: - the capacity k,

- the degree at most n and

- the height at most h

- without using checking rules.
If we allow checking rules the family of all sets of numbers computed by P colonies
is denoted by NPCOLy,-K. If the P colonies are restricted too, we change
notation to NPCOLp,. R or NPCOLp. KR.

2.2 Register Machines

In this work we want to characterize the size of the families NPCOLp,-(k,n,h)
comparing them with the recursively enumerable sets of numbers. To achieve
this aim we need the notion of a register machine.

Notes on Restricted P Colonies 183

Definition 2. [8/ A register machine is the construct M = (m, H,lo,ln, P)
where: - m is the number of registers,
- H is the set of instruction labels,
- ly 1s the initial/start label, 1, is the final label,
- P is a finite sel of instructions injectively labeled with the elements
from the given set H.

The instruction of the register machine are of the following forms:

li : (ADD(r),l2,13) Add 1 to the contents of the register r and proceed to the
instruction (labeled with) I3 or I3.

11 : (SUB(r),l2,13) If the register 7 is not empty, then subtract 1 from its con-
tents and go to instruction lo, otherwise proceed to instruc-
tion 13.

In: HALT Stop the machine. The final label [, is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction
I : (A(r),la,13) and in each SUB-instruction {; : (S(r),lz2,13) the labels I1, 12,13
are mutually distinct.

The register machine M computes a set N (M) of numbers in the following
way: we start with all registers empty (hence storing the number zero) with the
instruction with label Iy and we proceed to apply the instructions as indicated
by the labels (and made possible by the contents of registers). If we reach the
halt instruction, then the number stored at that time in the register 1 is said
to be computed by M and hence it is introduced in N(M). (Because of the
nondeterminism in choosing the continuation of the computation in the case of
ADD-instructions, N(M) can be an infinite set.) It is known (see e.g.[7]) that
in this way we can compute all sets of numbers which are Turing computable.

Moreover, we call a register machine partially blind (5], if we interpret a sub-
tract instruction in the following way: {3 : (S(r);l2;l3) - if register r is not
empty, then subtract one from its contents and go to instruction I, or to instruc-
tion l3; if register r is empty when attempting to decrement register r, then the
program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers are empty.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRM,. The partially blind register machine accepts
a proper subset of NRE.

3 On computational power of restricted P colonies
Without Checking

The next results were proved to be true:

— NPCOLprKR(2,%,5) = NRE in [2,7],

~ NPCOLyarR(2,%,5) = NPCOLp. KR(2,1,+) = NRE in [4] ,
— NPCOLpgr(1,%7) = NRE in [1],

— NPCOLper(1,4,%) = NRE in [1],

184 L. Ciencialovad and L. Cienciala

3.1 P colonies With Two Objects
Theorem 1. NPCOL,, R(2,2,*) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony IT = (A, e, f, Ve, B1, B2) simulating a computation of register machine
M with: - A = {G} U {l;, 00007 1T A l Ly, L, L} F; | l; € H} U
Udar |1 <r<m},
-f = a,
-Bj = (Oj’PJ')’ Oj = {6,6},j =1,2
At the beginning of the computation the first agent gencrates the object Iy (the
label of starting instruction of M). Then it starts to simulate instruction labeled
lp and generates the label of the next instruction. The sets of programs are as
follows:
(1) For initializing of the simulation there is one program in P;:
1:{e—lpe—e)
The initial configuration of IT is (ee, ee, £). After the first step of computation
(only the program 1 is applicable) the system enters configuration (lpe, ee, €).
(2) For every ADD-instruction l; : (ADD(r),ls,13) we add programs to P;:
2:{e—-apjly —e). 4:(l = 1;G e,
3:{e— Gsa, «~ i), 5:{ly = 13;G < ¢)
When there is object I; inside the agent, it generates one copy of a,, puts it to
the environment and generates the label of the next instruction (it nondetermin-
istically chooses one of the last two programs 4 and 5)

configuration of I7
Bl BQ Envy P1 P2
1.| e ee ar 2 -
2.0 ape ee lya? 3 -
3. Gl ee aftt ldor5 -
4. lge ee aftl@

(3) For every SU B-instruction l; : (SUB(r),ls,13) there are subsets of pro-
grams in P; and Ps:
Programs in P Programs in P, Programs in P

(= le—e) 12 <11-—>l ee—»L’l’/ 18:

e—Lije— 1)

6 (
7:ile =11« e) 13 : ll—>13,e«——>L> 19:([’-—+L1,L1Hlu)
. " /

Sile— Ul —e) 1d: (L) —lyls <€) 20: ({ = LY LY < ar)
21 s LY L

91(1’” l"”,eHe) 15 : <L1—>F3,l;<—>e> <ar——>€ 1 1>
22: (L) —mee o)

10 4 —’_ll;e e 16 <e — b fs HZ—B-> 23:(lf — e L] « F3)

11:<Z1_—>E;e<—+6> 17'<l;3—>l3;l£‘_’6> 24: (F3 —e;e « e)

At the first phase of simulation of the SU B instruction the first agent gener-
ates object I7, which is consumed by the sccond agent. The agent B, generates
symbol L; and tries to consume one copy of symbol a,. If there is any a.,, the
agent sends to the environment object L} and consumes L;. The first agent after

Notes on Restricted P Colonies 185

this step consumes L{ or L; and rewrites it to I or 3. The objects I;, I, and
I; are for a synchronization of the computation in both agents and for storing
informations about the state of the computation.

An instruction {; : (SUB(r),l2,l3) is simulated by the following sequence
of steps.

If the register r is empty: If the register r is not empty:
configuration of IT configuration of I
B By Env P P B, By Env P P
1.| e ee ar 6 - [11.] le ee 6 -
2| lle ee a® 7T = |l2.| lle ee 7 -
3. e ee liaZ 8 18 ||3.] e ee 4 8 18
4. e Ly YaZ 9 19 ||4.| e Lil§ y 9 19
50 1"e LilY Lia® 10 20 [j5.("e Lyl Ly 10
6.| he LYa, LyLia® Y 11 21 ||6.| lie LiylY L, 11
70 e eLy Lfa®' |12 22 ||7.| lle L L 13
8. LY ee aZ™? 14 - ||8.|IlsLy LYY 15 -
9. lee ee afTlly 9.| Fze LY I3 16 -
10, I3l3 LYl F3 17 23
11.| lze Fze I3L] |20r6 24
12, 77 ee 3L} o none

(4) For the halting instruction [, there is no program neither in the set P
either in the set P;.

It is easy to see that the P colony IT correctly simulates any computation
of the register machine M and the number contained on the first register of M
corresponds to the number of copies of the object a; presented in the environment
of 1. The rest of the proof follows by the Church-Turing thesis and by the
computational universality of the register machine. a

3.2 P Colonies With One Object
Theorem 2. NPCOL,q,R(1,2,%) D NRMpp.

Proof. Let us consider a register machine M with m registers. We construct
a P colony IT = (A, e, f, Vg, B1, Bs) simulating a computation of the register
machine M with:

-A={J, TV, QYU {l;, ;1 L, L, L E; | ; € H} U{a, | 1 <17 <m},

- f=a,

- 31 = (Oi,Pi), Ol = {e},i = 1,2
The sets of programs are as follows:

(1) For initializing the simulation:

P]_. Pll Pz:

1: {e— Jy, 3. (J -y, 5: (e —J),

2: (Jee), 4: (Q — Q), 6: (J—J,
7:(J e

186 L. Ciencialova and L. Cienciala

At the beginning of computation the first agent generates the object Iy (the label
of starting instruction of M). It generates some copies of object J. The agent
B, exchange them by J'.

configuration of [T

B1 Bg Env P1 Pg
1. e 1 —
2. J 2o0r3 —
3. e e J 1 5)
4. J J 20r3 6
50 o J’ or24or34 7
6. 7 e J’

(2) For every ADD-instruction l; : (ADD(r),l2,13) P, and P, contain:

P] : P1 H P2 :
8: {lh = 1)), 14: (L) — E7), 18: (e« 13},
9: (Il «J), 15: (L1 — Q), 19: (I} — Ey),
10: (I — Q), 16: (B — L), 20: (B <€),
11: (J' — LYY, 17: (Ey — 1), 21: (e« L),
12: (LY — L)), 22: (Ly — a.y,
13: (L} — Ly), 23: (ar —€)

When there is object /; inside the agent B;, the agent rewrites it to one copy
of /] and the agent sends it to the environment. The agent By borrows E; from
the environment and gives a little altered (to E7) back.

The agent B; rewrites the object J’ to some L;. We have to generate it in
three steps to wait till the second agent generates the symbol E! and places it to
the environment. If this L; has the same index as E} placed in the environment,
the computation can go to the next phase. If the indices of L; and E; are different,
the agent B, generates @ and computation will never stop. If the computation
gets over this checking step, B; generates object Iy or 3.

configuration of I/
Bl BQ Env Pl PQ
1. L e J’ 8 -
2.1 4 e J’ 9 or 10 -
3. J’ e M 11 18
4.1 LY l; 12 19
5.1 Lf E; 13 20
6.| L e E; 14 or 15 —
7. E, e Ly 16 or 17 21
8. lo Ly 8or24dor34 22
9. ? a, Qor250r35 23
10. ? e ar

(3) For every SU B-instruction Iy : (SUL(r), ls, l3) there are subsets of programs
in P and Ps:

Notes on Restricted P Colunies 187

Pgl

P1 : P] :
24: (I, =1y, 28 :
25: (Y < a,), 29 :
26: (If —Q), 30:
27: {ar = V),

(Ve I'),
(1" = by,
<lllu - l3>)

31: (I =ey,
32: (1Y = 1"y,
33: (I «—¢)

In the first step the first agent checks if there is any copy of a, in the environ-
ment (whether register r is not empty). In the positive case it rewrites a, to V,
in the other case I{ is rewritten to @ and the computation will never halt. At
the end of this simulation the agent B; generates the object l2 or [;.

configuration of IT configuration of IT

By Bs Env P P, By By Env | P P,
1.0 e ar 24 - {110 L e 24 —
2. U e ar [250r26 — |2, I e 26 -
3. ar e i 27 31 |13 @ e 4
41 V l’l’ - 32 ||4.] @ e
5. V I — 33
6.l V e iy 28 -
7. e 29 or 30 -
8. lg €

(4) For the halting instruction I there are programs in the sets P, and Py:

P1:

34: (I« J),
35: (J’—->Lh>,
36: (I, — Q),
37: (Lp — L),
38: <Lh HE>,

PQZ Pgt

39: (e e lp), 43: (Lp > ar),L<r<m
40: <lh—>Z;>, 44 : {a, «e)

41 : <Z;—L<->e>,

42: (e & Ly),

By using this program, the P colony finishes computation as well as the par-
tially blind register machine halts its computation. The last two proprams in the
sequence of P, are to control if the registers except the first one arc empty.

if all counters r,1<r<m are empty

if some counter r,1<r<m is nonempty

configuration of /1 configuration of I7
B] Bg Env P1 PQ Bl Bg Env 1)1 P2
1. Iy e J 34 0r36 — ||1.[Iy e Ja, 134 or 36 —
2. J e Iy 35 39 |12. J e lha, 35 39
3.\ Ly In 37 40 3.} Ly In Qr 37 40
4| L I 37 41 |4 Ln In ar 37 41
50 Ly e | 38 — |50 Ly e Ina, 38 -
6. I e Ly - 42 |6.| I, e Lpa, - 42
7.0 1, Ly - - 7] & L ay - 43
8. E (7% Lh - 44
9.

b Ln ar - 43

188 L. Ciencialova and L. Cienciala

It is easy to see that the P colony II correctly simulates any computation
of the partially blind register machine M. O

4 Conclusions

We have shown that the P colonies with capacity & = 2 and without checking
programs with height at most 2 are computationally complete. In the next part
of this study we have verified that P colonies with one object inside the agent
and without checking programs can simulate partially blind register machine.

Activities carried out in the field of membrane computing are currently nu-
merous and available at [11].

This work has been supported by the Grant Agency of Czech Republic grants No.
201/06/0567 ”Bioinformatika a biovyjpoéty: souvislosti, modely, aplikace” and
by IGS SU ¢.32/2007.

References

1. Ciencialova, L., Cienciala. L.: Variations on the theme: P Colonies, Proceedings
of 1°t International workshop WFMO06 (Kol, D., Meduna, A., eds.),Ostrava, 2006,
pp. 27-34.

2. Csuhaj-Varji, E., Kelemen, J., Kelemenova, A., Paun, Gh., Vaszil, G.: Cells in
environment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006,
pp. 201-215.

3. Csuhaj-Varju, E., Margenstern, M., Vaszil, G.: P Colonies with a Bounded Number
of Cells and Programs. Pre-Proceedings of the 7th Workshop on Membrane Com-
puting (Hendrik Jan Hoogeboom, H. J., Pdun, Gh., Rozenberg, G. eds), Leiden,
The Netherlands, 2006, pp. 311-322.

4. Freund, R., Oswald, M.: P colonies working in the mazimally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Paun, eds), Timisoara, Romania, 2005,
pp. 49-56.

5. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7(1), 1978, pp. 311-324.

6. Kelemen, J., Kelemenovd, A.: On P Colonies, a biochemically inspired Model

of Computation. Proc. of the 6th International Symposium of Hungarian Re-

searchers on Computational Intelligence, Budapest TECH, Hungary, 2005, pp.

40-56.

Kelemen, J., Kelemenovd, A., Paun, Gh.: Preview of P colonies: A Biochemically

Inspired Computing Model. Workshop and Tutorial Proceedings, Ninth Interna-

tional Conference on the Simulation and Synthesis of Living Systems, ALIFE IX

(M. Bedau at al., eds) Boston, Masss, 2004, pp. 82-86.

8. Minsky, M. L.: Computation Finite and Infinite Machines. Prentice Hall, Engle-

wood Cliffs, NJ, 1967
9. Paun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108-143 and TUCS Research Report No 208, Turku, 1998.
10. Paun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
11. P systems web page: http://psystems.disco.unimib.it

=~

