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Abstract. This paper introduces derivation tables that represent a com-
plete grammatical derivations as whole in a vertical way. These tables
are obtained by writing the consecutive sentential forms of grammatical
derivations vertically one by one. The present paper places and discusses
some restrictions on the columns of these tables. More specifically, these
restrictions constrain the order of context-sensitive derivations on bound-
aries of columns. It is demonstrated, that grammars restricted in this way
generate an infinite language hierarchy.

1 Introduction

Standardly, the formal language theory always places context restrictions on
the currently rewritten sentential form regardless of the preceding and following
sentential forms. In this paper, however, we create derivation tables by writing
all the consecutive sentential forms vertically one by one. Then, we place some
context restriction on the resulting table’s columns. As a result, we actually
restrict the grammatical derivations as a whole in a vertical way.

More specifically, we discuss vertical restrictions in terms of the type-0 gram-
mars in Kuroda normal form, where we divide their grammatical tables into
columns. Then we restrict the order of context-sensitive derivations in the whole
table on boundaries of these columns. More specifically, all context rules applied
across the border between columns i — 1 and i must be applied after all context
rules that had been applied across the border between columns ¢ and 7 + 1. We
demonstrate that under this restriction the grammars satisfying this requirement
define an infinite hierarchy of languages that is equal to the hierarchy defined
by flip-pushdown automata (see (6] and [7]).

2 Definitions

We assume that the reader is familiar with the language theory (see [1], [2], [3],
[4])-

Let V be an alphabet. V* represents the free monoid generated by V under
the operation of concatenation. The unit of V' is denoted by £. Set V+ = V*—{¢}.
For a word, w € V*, |w| denotes the length of w. For a word of the form zw,
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where z,w € V*, pref(zw) = z denotes the prefix of zw. Similarly, for a word of
the form wz, where z,w € V*, then suf(wr) = z denotes the suffix of wz. Let
w = aiaz...an, where a; € V, 1 <14 < n. The reversal of w, rev(w), is defined
as rev(w) = a, ...aza;.

Throughout this paper, a phrase-structure grammar, G = (V,T, P, S), is
always specified in Kuroda normal form (see [5], page 741 in [1]), where V is
an alphabet, T C V, S € V — T, and P is a finite set of productions, where
every production is either of the form AB — CD, A — z, or A — ¢, where
ABCDeV-T,zeTU(V-T)?2%Ifz,ye V" z=uaw, y=ubv, and
a — [ € P, where u,v,a,08 € V*, then z directly derives y in G by using
o — (3, symbolically written as z = y [@ — (], or, simply, z = y in G.
Furthermore, =", =7, and =" denote the n—fold product, transitive closure
and transitive-reflexive closure of =, respectively. The language generated by
G, L(G), is defined as L(G) = {y : S =* y in G, y € T*}. Consider an n-step
derivation of the form y; = y2 = ... = y, in G for some n > 1, where y; = S.
We next express this derivation by its derivation table as

S = 211 T12 ... Tim
= T21 T22 ... Tam

= Tn1 Tp2 - Tnm

wherem > 1,z € V*, 51Zi0. . . Zim =¥, L i <nand 1 < j <m. A segment
is every string z;; in this table, and if z;; € T*, z;; is a terminal segment.
A column is a vector of the form (z,;,z2;,...,%n;). Let a column of this form
satisfles x1; = €, 225 = €,...,2p—1; = ¢, and || = 1, [Zhg15] 2 1, |Tns] 2> 1,
where 1 < k < n; then, zt; is a head. Let C1 = (z15,Z25,....%nj), C2 =
(1541, %2541, -, Tnj+1) De two neighbouring columns, for some j > 1. Let
suf(zy) = A, pref(zij+1) = B, suf(zip1;) = C, pref(xiz1j41) = D, AB —
CD € P. Then, we say that AB — CD is applied across the boundary between
Cy and Cs.

A flip-pushdown automaton (see [6], [7]) is a tuple M = (Q, T, I, R, qo, Zo, 4,
F), where () is a finite set of states, T is a finite input alphabet, I' is a finite
pushdown alphabet, R is a finite set of rules of the form Apa — vq, where A € I,
D,qE€EQ,aceT* vel™* qs €Q is the initial state, Zy € I is the initial symbol
on the pushdown, FF C @ is the set of final states and A is a mapping from @
to 29.

A configuration of M is any string of the form uApaw, whereu € I'*; A € I,
p € Q,awe T If uApaw and uvqu are two configurations and Apa — vq € R,
then M makes a transition from a configuration uApaw to uvqw, symbolically
written as udpaw F wvqw[Apa — vq], or, simply, udpaw + wvqw. If ¢ € A(p)
and A = Zy, then uApaw F rev(u)Aqaw. If A # Zy, then uApaw + Arev(u)qaw.
The transition of this form performed by using of the mapping A is called the
pushdown reversal. Whenever, there is a choice between an ordinary pushdown
transition or a pushdown reversal, then the automaton nondeterministically
chooses the next move. As usual, the n—fold product, the transitive closure
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and the reflexive-transitive closure of + is denoted by +?, -* and F*, respec-
tively, where n > 0. Consider that ¢; - ¢ + ... F ¢, in M, n > 0. Then,
cn ... 4 ¢ ¢ is the same sequence of moves in M written in reversal. We
use this notation for maximal lucidity in some cases. Relations <t and 4* are
defined in the usual way.

Let k& be a natural number. For a flip-pushdown automaton, M, we define
the language accepted by final state and exactly ¥ pushdown reversals to be
Li(M) = {w € T*|Zpqow F* vf with exactly k pushdown reversals, for any
v € I'* and f € F}. Denote the family of context-free languages and the family
of recursively enumerable languages as CF and RE, respectively. Next, denote
the family of languages accepted by flip-pushdown automata with exactly &
pushdown reversals as FPDA, and name every language from this family as
a k—flipping language. From [6] and [7], CF = FPDA, Cc FPDA; C ... C
FPDA_ = RE holds.

3 Results

Theorem 1. A language L is (m — 1)-flipping if and only if there is a constant
k > 1 and a grammar G = (V,T, P, S) in Kuroda normal form, such that L =
L(G) and G can generate every z € L(G) by a derivation of the form

S = Z12 ... T1im
= T91 T2 ... Tom

= Tnl Tn2 ... Tnm
where n, m are two positive integers, and

1 |zyl <k 1<i<n 1<j<m

2. forallh =2,...,m there exists x.p, € VT such that for allq=1,...,h and
o=h+1,....m, 24 =¢

3. for all adjacent segments x.q and Toqrr, wherel <c<nandd=1,2,...,m—
1, if there is a rule that rewrites T.4Tcq4+1 on boundary in a context way, then
there is no rule that rewrites any TpaZpq+1 on boundary in a context way for
allp=cec+1l,...;nandq=d+1,d+2,...,m

Proof. The only if portion is trivial. Next, we prove the if portion. That is, let
G be a grammar satisfying the conditions described in Theorem 1. We construct
a flip-pushdown automaton, M = (Q,T, I, R, q0, Zo, 4, F) in the following way:

Q=1{f}u{{Aa(Aa)#f AEN, ae V", |a| <k}
I = F() U {ZO,ZP}, where F() = {(AB — CD)lAB —CD e P}
s=(S,¢€)
R=R;yURcs1URcs2UR; U Rpypap U Rp is constructed by performing
following steps:
I For every z € T* with |z| <k
add rules of the form Zy(X,e)z — Zp(X,z) into Ry
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II For every z € T™ with |z| < k and for every p: AB—-CD € P
add rules of the form (p)(X,e)z — (p)(X,z) into R,
111 For everyae TU{c} andrule A - a € P
add rules of the form Z{(X,@aB) — Z(X,aAB) into Ry, where Z € I,
Z # Zy and |aaB| > 0
IV For every AB — CD in P add:
(a) Zp({X,aC) — (AB — CD)Zp(X,aA) into Rcs:
(b) (AB — CD)(X,Dpg) — (X, BB) into Rcs2
(c) Z{(X,aCDB) — Z(X,aABp) into Ryn, where Z € I', Z # Zy
V For every A — BC in P add:
(a) Z(X,aBCB) — Z(X,aAB) into Ryn, where Z € I', Z # Zy
(b Zp(A,B) — Zp(C,e) into Rygap
VI For every (X,¢) € Q, where X € N set A((X,¢)) = {(X,¢)}
VII For every A€ N, add Zp(A,A) — ef to Rp

The construction is completed. Next, we prove that L(G) = L(M) by demon-
strating L(G) C L(M) and L(M) C L(G). First, we prove L(G) € L(M). By
induction, we demonstrate Claims A, B and C.

Claim A. S =" Mazfu in G implies ef 4 Zp(X, X) =* o{Z,czf)w in M,
where X, Z e N, a,B,\peV*, 2 e NN UNUTU{e},weT", 0",

Basis

Let i = 0. Then S =° S in G. By VII, Zp(X,X) — ¢f € R for every X € N,
soef 4 2Zp(S,8) 4 Zp(S,S) in M.

Induction Hypothesis. Assume that Claim A holds for every i < n, where n
is a positive integer.

Induction Step. Consider any derivation of the form S ="*! \ayflu and ex-
press this derivation as S =" Mazfu = Aayfu, where T,y € N2UNUT U {=},
a,B, A pe V.

By the induction hypothesis, f +* o(Y,azB)w 4 o(Y,ayB)w in M, where
o € I'*. The next three cases cover all possibilities how G can make the deriva-
tion AazfBu = Aayfu.

a) Let A—»aeP,z=A,y=a,

where a € TU {e}, A€ N.

Then, AaAfBu = AaafulA — a] in G.

By III, Z(X,aaf) — Z(X,aAS) € R,

s0 0Z(X,axf)w 16Z(X,ayf)win M, Z e, 6 €T
b) Let A—- BCe P,z =A,y=BC,

where A, B,C € N.

Then, AadfBu = \aBCpBu[A — BClin G.

By Va, Z(X,aBC3) — Z(X,aAB) € R,

50 6Z(X,azf)w 416Z(X,ayB)win M, Ze I, 6 € I'*.
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c) Let AB—-CD¢€ P, z=AB,y=CD,
where A, B,C,D € N.
Then, AaABBp = A\aCDBu[AB — CD] in G.
By IVc, Z(X,aCDg) — Z(X,a«ABB) € R,
so 6Z{X,azxf)w 40Z(X,ayflwin M,Z € I', 6 € I'™".

Thus Claim A holds. O

Claim B. Let z,y € T* are two adjacent terminal segments of any sentence
w € L(G), |z, |y| < k. If there exists a derivation of the form agzoyefs =~
a1z Ay By f1 = a1z C1 Dy 1 [p1] =* azxzoA2Bayafe =

aaz2Co DayafBalpe] = ... =% airiAiBiyifi = oux,CiDyiBi[p] =" azyf in
G, where every p; = A;B; — C;D; € Pcg rewrites A; and B; on boundary
in a context way (4;,B;,C;,D; € N, a,8,0m,Bm € V* for j = 1,2,...,1,
m=20,1,...,1), then

Zpu(X,z)yw F* Zp(X,z;Clyw b () Zp{X, z;Aj)yw H* ...

() (3) 2P (X, 22C2)yw = (pi) - - (p3)(p2) Zp (X, 22 A2)yw
(pi) -+ (p3)(p2) ZP(X, 21 Cr)yw & (pi) - - - (p3)(p2) (P1) ZpP (X, 21 A1) yw B~
(i) - (p3)(p2)(P1) ZpP (X, To)yw

and

Zp(p1) .. (pi-1) @Y, y)w " Zp(p1) ... (pi-1) (2 (Y, Diys)w F
Zp(p1) - (pi-1)(Y, Biyi)w F* ... = Zp(p1)(p2)(Y, Day2)w =
Zp(m)(Y, Bay2)w F* Zp(p1)(Y, Diy1)w = Zp(Y, Biy1)w =* Zp(Y, yo)

in M, where z;,y, € V*, uef(),OSjSi,wET*, (p1),---,(ps) € I.

Basis Let ¢ = 0. Then agzoyoBy =* azxyl in G. In this case, there is no
rewriting in a context way between the investigated columns, so productions
are applied only inside these columns. Thus, in M, Zp(X,z)yw +* Zp (X, zo)yw
and Zp(Y,y)w F* Zp(Y,yo)w, where only reductions inside the columns are
simulated (see Claim A).

Induction Hypothesis Assume that Claim B holds for every ¢ < ¢, where ¢ is a
positive integer.

Induction Step By the induction hypothesis,

Zpu(X,z)yw H* Zp(X, 201 Cop)yw b (pei1) Zp(X, zoi1Ary1)yw F*
(Pr+1)Zp (X, 2:Cr)yw F (pr+1)(pe) Zp (X, T Ar)yw H* . ..
BT (per1)(Pe) - (p3) Zp (X, 22C2)yw

(Pe+1)(pe) - - - (p3)(p2) ZpP (X, 22 A2)yw F~
(Pe+1)(Pe) - - - (P3)(p2)ZpP (X, Tlcl)yw =
(Pe+1)(Pe) - - (P3)(P2) (1) Zp(X, T1 Ar)yw F*
(Pe+1)(pe) - (P3)(P2) (P1) ZP(X, To)yw

and
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Zp(P1)(p2) - - - (Pe-1)(Pe) (Pe41 (Y, y)w

Zp(p1)(p2) - - (Pt~1)(Pt)(P:+1)(Y, Dij1ye+1)w F

Zp(p1)(p2) - (Pe-1) (P )Y, Besryeq1)w H*

Zp(p1)(p2) - - (Pe-1)(Pe)(Y, Dyye)w

Zp(p1)(p2) .- (pe=1 )Y, Bey)w ... B Zp(p1)(p2)(Y, Daya)w -

Zp(pi)(Y, Bay2)w F* Zp(p1)(Y, Diy1)w +
Zp(K B]y1>w I‘* ZP(Y, yo)w

By IVa and IVb, for every production of the form AB — CD € P, there are
productions of the form Zp(X,aC) — (AB — CD)Zp(X,aA) and (AB —
CD)(X,DpB) — (X,BfB) in R. These productions simulate the transitions of
the form (p+1) ... (Pr—1)Zp(X,2,Cr)yw & (peg1) - .. (pr-1)(pr)Zp (X, 2, Ar)yw
and Zp(p1) ... (ps—1)(@s)(Y, Dsys)w = Zp(p1) ... (ps—1)(Y, Bsys)w in M, where
r,s=t-+1,t,...,1, so Claim B holds. a
All other derivation and transition steps in G and M are investigated in Claims
A and C.

Claim C. Azp =' Nz’ in G implies u(Z,azB)w F* v(A,Y)w’ in M, where
AN ' eV z.z € NNUN, A, Z € N,w,w’ € T* and u,v € I'*. For |z| = 1,
thereare A=1z,Y € N and for z = 2,29, 21,72 € N, thereare A =z,, Y =¢.

Basis Let @ = 0. Then Azp =0 Az in G. Clearly, u(Z, 0zf)w F° w(Z, azf)w in
M.

Induction Hypothesis Assume that the implication in Claim C holds for every
t < g, where g is a positive integer.

Induction Step Consider any derivation of the form Azp =91 XNyu' and express
it as Azp =9 Moy = Nyy/, where z,y,2 € N2UN, A\ u, N, u' € V*.

By the induction hypothesis, u(Z,azf)w F? v(A,Y)w' + v{AY')o' in M,
u,v,v/ € I'". Next, we examine the derivation Nzp' = Nyu' in G.

Let A — BC € P,z = A, y = y1y2 = BC, where A, B,C € N. Then,
NAp' = NBCu'[{A — BC] in G. By Vb, Zp(A,B) — Zp(C,e) € R, so
wZp(z,y1)w bk wZplys, e)w in M, where w € I'*. d

Observe that Claim C holds. By Claims A, B, and C, L(G) C L(M) holds.

The complete proof of the second inclusion, L(M) C L(G), unfortunately ex-
ceeds the page limit of this paper, so we leave it on the reader and we only
shortly outline its structure.

The proof of this inclusion is based on the form of computation of flip-
pushdown automata, where there can be identified some main parts in the com-
putation, which are closely linked to the corresponding derivation sequences
in the grammars restricted in the vertical way described before. By this it is
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proved that these automata can simulate every derivation in the vertically re-
stricted grammar from the bottom, where the parsed sentence is read and pro-
cessed column-by-column. There is the pushdown flip performed between every
two consecutive columns, so the context-sensitive derivations on the column’s

boundaries can be efficiently simulated on the pushdown.
By this, L(A) C L(G) is proved and thus Theorem 1 holds. [ ]

From the previous result, some corollaries follow. To formalize them, consider
a phrase-structure grammar G;, in Kuroda normal form satisfying the vertical
restrictions from Theorem 1, which generates every w € L(G;) by using exactly
i columns. Name this grammar as an ¢—column grammar, where ¢ > 1. Denote
KNF; the family of languages generated by i—column grammars.

Corollary 1. FPDA;_; = KNF,
Corollary 2. CF = KNF; C KNF; C ... C KNF_ = RE

4 Conclusions

The introduced restrictions preserve all forms of derivation rules defined by the
Kuroda normal form of phrase-structure grammars. Notice that there were no re-
strictions on the number of derivation steps in the particular columns introduced,
but only the order of context-sensitive derivations on boundaries was restricted.
As a result, we found a new infinite language hierarchy generated by grammars
restricted in this way, where the lowest family of languages in this hierarchy is
equal to the context-free languages and the highest family corresponds to the
family of recursively enumerable languages. This result is very interesting in the
formal language theory and extends the area of infinite language hierarchies by
a new type.
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