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Abstract. This paper introduces deriuation table.s that represent a com-
plete grammatical derivations as whole in a vertical way. These tables
are obtained by writing the consecutive sentential forms of grammatical
derivations vertically one by one. The present paper places and discusses
some restrictions on the columns of these tables. IVIore specifically, these
restrictions constrain the order of context-sensitive derivations on bound-
aries of columns. It is demonstrated, that grammars restricted in this way
generate an infinite language hierarchy.

Introduction

Standardly, the formal language theory always places context restrictions on
the currently rewritten sentential form regardless of the preceding and foilowing
sentential forms. In this paper, however, we create derivation tables by writing
all the consecutive sentential forms verticaily one by one. Then, we place some
context restriction on the resulting table's columns. As a result, we actualiy
restrict the grammatical derivations as a whole in a vertical way.

More specifically, we discuss vertical restrictions in terms of the type-O gram-
mars in Kuroda normal form, where we divide their grammatical tables into
columns. Then we restrict the order of context-sensitive derivations in the whole
table on boundaries of these columns. More specifically, all context rules applied
across the border between columns i - 1 and i must be applied after all context
rules that had been applied across the border between columns i and i * 1. We
demonstrate that under this restriction the grammars satisfying this requirement
define an infinite hierarchy of languages that is equal to the hierarchy defined
by fl ip-pushdown automata (see [6] and [7]).

Definit ions

We assume that the reader is familiar with the language theory (see [1], [2], [3],
t4l)

Let V be an alphabet. 7* represents the free monoid generated by 7 under
the operation of concatenation. The unit of V is denoted by e. Set V+ : V* - {ui.
For a word, w e V", ltll denotes the length of u. For a word of the form rtu,
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where rru) e V*,pref  ( r . ) :  z denotes the pref ix of  rw. Simi lar ly,  for  a word of
the forrrr tur, where r)u) e V*, then suf (wr): z denotes the suffix of.wr.Let
1 t  :  a ra2 . . .  a r r .  where  a ;  €  V , I  <  i  I  n .  The reversa l  o f  w ,  re ts ( tu ) ,  i s  de f ined
a s r e u ( u ) : a ^ . . . . a 2 a r .

Throughout this paper, a phrase-structure grammar, G _ (V,T,P,S). is
always specified in Kuroda normal form (see [5], page 74I in [1]), where V is
an alphabet, ? e V, S e V - 7, and P is a finite sct of productions, where
every production is either of the form AB -, CD, A , rt or A + €, where
A , B , C , D  €  V  -  T ,  r  €  ? U  ( V  _  T ) 2 .  I f  r , A  €  V * ,  r  :  L l d ' u t  a  :  u / u ,  a n d
a ---  0 € P, where u,u,d, ,B e 7*,  then r  d i rect ly der ives y in G by using
o -) B, symbolicaliy written as z =+ A [a --+ C), or, simply, r + y in G.
Furtherrnorc, =+n, ==)*, artd +* denote the n-fbld product, transitive closure
and transitive-reflexive closure of +, respectively. The language generated by
G,  L (G) ,  i s  de f ined as  I (G)  :  {g : ,S  +*  y  in  G,  A  e  T* } .  Cons ider  an  n-s tep
der ivat ion of  thc form At *  Az +. . .  + an inG for some n )  7,  where Ur :  S.
We next express this derivation by its deriuation table as

" : : : : : : :  
: : r :

1  I n l  I n 2  . . . I n n t

w h e r e  m )  I ,  r f i  Q  V * ,  t r i 1 r i 2 . . . r i r n  :  U i , l  <  i  (  n  a n d  |  <  j  I  m .  A  s e g m e n t
t  - J

is every string rii in this table, and if rii € T*, rii is a term'inal segment.
A colu 'm'n is a vector of  the form (r t j , r r j , . . . ,  rn j ) .  Let  a column of  th is fornt
s a t i s f i e s  r L j  :  € , r z j  :  € , . . . , r k - I j :  € ,  a n d  l z p r l  :  1 , l r x + t j l  >  1 , , . . . , l r n j l  >  1 ,
where 1 ( k
( , ' i + ' , T 2 3 + | ' . . . ' I n j * | ) b e t w o n e i g h b o u r i n g c o I u m n S ' f o r s o m e 7 >
suf  ( r i i ) :  A ,  p re f  ( r i ia r )  :  B ,  su f  ( r i s1 i ) :  C ,  p re f  ( r , i y r r+ t )  -  D ,  AB - - ' ,

C D e P. Then, we say that AB --- C D is applied across the boundary between
C1 and C2.

A f l ip-pushdown automaton (see [6] ,  [7])  is  a tuple M -  (Q,7,  f  ,  R,Qo, Zo, A,
F), where Q is a finite set of states, ? is a finite input alphabet, f is a finite
pushciowrr alphabet, .R is a finite set of rules of tlie fornr A'pa, --- uq, where A e f ,
p , q e  Q , o € T * , u  €  . f * ,  Q o  €  Q  i s t h e i n i t i a l s t a t e ,  Z o €  f  i s t h e i n i t i a l s y m b o l
on tlr.e pushdown, F e Q is the set of final states and d is a mapping from Q
t o  2 Q .

A confi,gu,ration of hI is any string of the form uApaw, where u € l*, A € f ,
p e Q, a.w € T* .If uApau and uuqw are two configurations and Apa -+ uq e R,
then /Jy' nrakes a t'rartsit'ion from a configuration uApaw to u,uqut, symboiically
written as uApaus I uuqulApa ----, uq], or, simply, uApata ? uuqw.If q € A(p)
and A - Zs, then uApaw I reu(u)Aqaw. It A + Zg, then uApau I Areu(u)qo*.
The transition of this form performed by using of the mapping 4 is called the
pushdown reuersal. Whenever, there is a choice between an ordinary pushdown
transition or a pushdown reversal, then the automaton nondeterministically
chooses the next move. As usual, the n-fold product, the transitive closure
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and the reflexive-transitive closure of F is denoted by F', F+ and F*, respec-
tively, where n 2 0. Consider that cl I c2 | ... F cn, in IvI, n ) 0. Then,
cn 1 . . . ) cz -l c1 is the same sequencc of moves in IvI written in reversal. We
use this notation for maximal lucidity in some cases. Relations -1+ and -l* are
defined in the usual way.

Let ft be a natural number. For a flip-pushdown automaton, fu|, we dcfine
the language accepted by final state and exactly k pushdown reversals to be
Lk(A'l) : {, e T*lZsqsw l. 7f with exactly k pushdown reversals, for any
1 € f* and / € Fi. Denote the family of context-free languages and the famiiy
of recursively euumerabie languages as CF and RE, respectiveiy. Next, denote
the fanrily of languages accepted by flip-pushdorvn autornata with exactly k
pushdown reversals as FPDA,6 and name every language from this family *
a k- f l " ipping language. From [6]  and [7] ,  CF -  FPDAo C FPDAr C . . .  C
FPDA"" : RE holds.

Results

Theorem 1. A language L is (m-1)-fii,pping i,f and only if there is a constant
k > 1 and a graTnTnar G : (V,7, P, S) r'n Kuroda normal forrn, such that L :
L(C) and G can generate euery z € L(G) bu a deriuat' ion of the form

' : : : : : : :  
: : :

)  r n r  T r t 2  . . .  r n n ,

where n)m are two pos'it iue'integers, and

1 .  l r , t l S k , l < i { n ,  1 <  j < m
2 .  f o ' r  a l l h : 2 , . . . , m  t h e r e  e r i s t s r r h e  V +  s . u c h t h a t f o ' r  a l l q -  1 , . . . , h  a ' n d "

o  :  h  *  1 , .  . .  , T r L ,  T q o :  €
3 .  Jo ' r  u l l  ad jace ' r t " t  segr r ten ts r r4  a 'n r l r r4 . , r1 , ,whe ' r 'e  I  S  c  1n  a 'ndd:  I ,2 , . . .  jm-

I, if there is a rule that rewrites r"6r"d+t oTL boundary in a contert way, then
there is no rale that rewrites anA rpqrpq+r on boundary in a contert way for
a l l , ' J t  - -  c , c } 1 , . . .  , ' n  o , n d ,  Q :  d + I , d * 2 , . . . , ' r n

Proof. The onhl i/ portion is trivial. Next, we prove the i,f portion. That is, iet
G be a gramlnar satisfying the conditions described in Theorem 1. We construct
a fl ip-pushdorvrr autornaton, M : (Q,7, l, R., qo, Zo, A,,F) in the following way:

.  Q  : { / } u  { ( ' { , o ) l (A ,o )  +  f ,  A€  N ,  a  €V" ,  l o l  S  f r }
r  l :  fg u {Zo,Zp},  where f3 :  {@B -- .  CD)IAB.-.  CD e P}
.  s _  ( S , r )
o f t :  Rrru U RcstU RcszU.Rr U Rrtnao URr is constructed by performing

following steps:
I For every r e T* with lrl < k

add rules of the form Zo(X,e)r ---+ Zp(X,r) into 87
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iI For every r eT* with l"l ! k and for every p : AB'-- CD e P

add rules of the form (p)(X,e)r '-- (p)(X,z) into Rr
III For cvery a, € T u {e } and rule A -+ a, e P

add rules of the form Z (X, aa/) "- Z (X, aA/) into Er1', where Z e f ,
Z * Zo and laapl > 0

IV For every AB '-- C D in P add:
(o )  Zp(X,aC)- - -  (AB - .  CD)Zp\X,o 'A)  in to  -R6:s1
(b)  (AB- - -  CD)(X,DP)  -  (X ,Bp)  in to  Rcsz
(.)  Z(X,aCDB)---  Z\X,aABB) into Rr,r , ' ,  where Z e f  , ,  Z *  Zo

V For every A -+ BC in P add:
(o) Z(X,aBCp) - ,  Z\X,aA|)  into R71' ,  where Z e f  ,  Z # Zo
(b)  Zp(A,B)  -  Zp(C,e)  in to  RnP,q ,o

VI  For  every  (X , t )  €  Q,  where  X €  l /  se t  A( (X ,e) )  :  { (X , t ) }
VIi For every A € l/, add Zp(4, A) '-- ef to -Rp

Tlre construction is completed. Next, we prove that tr(G) : L(M) by demon-

strat ing L(G) e L@) and L(M) e fg1.  First ,  we prove L(G) e L$,1).  Bv

induction, we demonstrate Claims A, B and C.

Claim A. S +'  ) ,arpp in G i rnpl ies €f  a Zp(X, X) 1* o(Z,arp)u in IvI ,
w h e r c  X , Z  €  N ,  a , g , ) , p , € V * ,  r  €  l / 2  u , n /  u  ? u  i e ) ,  a  € T * ,  o  €  . f * .

Basis

Let  i :0 .  Then,9  +0 ,S in  G.  By  VI I ,  Zp(X,X)  *  € f  e  R fo r  every  X  e  l / ,
so e/  I  Zp(S, S) 1o Zp(,g,  S) in M.

Induction Hypothesis. Assume that Claim A holds for every i 1 n, where n

is a positive integer.

Induction Step. Consider any derivation of the form 5 =1n*1 \aa/p and ex-
press th is der ivat ion as,S =+'  ) ,anBp,+ ) ,ayBp,,  wl iere r ,U € l /2u.n/u?u{u},
a, C., \, 1,t" € V" .

By the induction hypothesis, f i* o(Y,arp)u t o(Y,ay7)r,., in &1, where
o € 1". The next three cases cover all possibilities how G can make the deriva-
Lion Aarpp. + ),ayljp,.

a) Let A -"+ a e P, r, : A, U : a,
w h e r e  a € T u { r i , A e  I Y .
Then, )aApp, + ),aaBpr,lA * o] in G.
By III, Z (X, aaB) --. Z \X, aAp) e R,
so  5Z(X,arB)a  )  62(X,ayB)w rn  lu [ ,  Z  e  l ,  d  e  f . .

b )  LeL A- .  BC e  P,  r  :  A ,  y  :  BC,
wherc A, B, C e .V.
Then, ),a-4Bp + ),aBC0plA -. BC) in G.
By Va, Z \X,  aBC B) --  Z (X, aAp) e R,
s o  6 2 ( X , , a x B ) w  1 6 2 \ X , a A P ) u  i n  M ,  Z  e  f  ,  d  e  f * .
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c)  Let  AB - -  CD e P,  r  -  AB,  A:  CD,
where A, B,C, D € l / .
Therr, ),aAB p p. + ),aC D 0 p,IAB --, C D) in G.
By IVc,  Z(X,aCDB) - ,  Z(X,aABB) e R,
so  6Z(X ,a rB)a  162 \X ,aAC)u  rn  M, ,Z  €  l - ,  d  €  f * .

Thus Claim A holds.

Claim B. LeL r,y e T" are two adjacent terminal segments of any sentence
'u,  e L(G),  l r l ,  lg l  < k.  I f  there exists a der ivat ion of  the form asts lsps)*
e r r r A t B t A t h  +  e t r t . C t D t A t / r l p t ]  1 *  a 2 r 2 A z B z A z ] z  +
a2r2C2Dzaz1zlpz) =+* . . .  =+* axr iAiBiU,0,  + air2CxDiat ,1t lpr)  +" aryp in
G, where every Pi : ArB, - CrD, € Pcs rewrites Ai and Bi o\ boundary
i n  a  c o n t e x t  w a y  ( A i , B i , C i , D i  €  N ,  a , 0 , , a * , C ^  €  V *  f o r  j  -  1 , 2 , . . . , , i ,
m , : 0 , 1 , . . . , i ) ,  t h e r r

Z p u ( X , r ) A a  l "  Z p ( X , r i C ) y a  |  ( p ) Z p \ X , r ; A ; ) A a  a "  . . .
.  .  .  F*  (p r )  .  . (p t )Zr (X , r2C2)ya  t  (pn)  .  . .  (p r )  (p r )Zp \X, r2A2)aa l *
(p , )  .  . .  hs ) (p r )Zp(X, r rCt )u ,  |  @n) .  .  .  (p r ) (p r ) (p t )Zp(X, :D1A1) 'ya  r *
(po)  .  . .  (p . ) (p r ) (p t )zp \X, ro )vu

and

Zp(pt)  .  .  .  (pr-r)(po)(Y,a),  r"  Zp(pt)  .  .  . (po-t)(po)(Y, Dis)u I
Zp(p t )  .  . ,  (po- , ) (Y ,  B iy r )a  l *  . .  .  F*  Zp(p t ) (p r ) (Y ,  D2y2)u  I
Zp( 'pr)(Y, Bzyz),  F.  Zp(pt)(Y, Dt 'yt) ,  I  Zp(Y,Brur) ,  F.  Zp(Y, 'yo)

i n  I u I ,  w h e r e  f r j , a t  € V * , u e  - l - 6 , 0  <  j  S i , u  € T " , ( p t ) , . . . , ( p r )  e  f 9

Bas'is Let i_ 0. Then aoroUo1o =9* anAP in G. In this case, there is no
rewriting in a context way between the investigated columns, so productions
are applied only inside these columns. Thus, rn NI, Zp(X,r)Au l* Zp(X,rs)ya
and Zp(Y,y)a ?- Zp(Y,Ao)a, where only reductions inside the columns are
simulated (see Claim A).

Induction Hypothesis Assume that Ciaim B holds for every i 4 t, where f is a
positive integer.

Inrht,cti,on Step By the induction hypothesis,

Z  p u ( X ,  r ) a u  l *  Z  p  ( X ,  r  t + t C  t + t ) y u  |  ( p t * r ) Z  p  \ X , ,  r t + r A t + r ) y a  l *
(p to t )  Z  p  (X ,  r1C)yw F (p r * r ) (p t )  Z  p \X ,  r lA l l ya  ?*  .  .  .
.  .  .  F*  (p t+ t ) (p r )  .  .  (ps )  Zp(X, r2C2)yu  I
(p '+r)  (p ' )  .  .  .  be) (pr)  z p \x,  r2A2)aa t*
(p t+ t ) (p r )  . .  .  (ps )  (pz)  z  p  (x ,  r rc1) t1u  I
(pr*t ) (p,)  .  .  .  (pr)  (pz)(pt)z p (x, ,  r rAt)vw r*
(p,+r ) (p') . . . (ps) (pr)(pt) z p (x, ro)au

and

!
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z p (pr)  (pr)  .  .  .  (pt-r)  (p ' )  (p '* t )  (Y,  y)u r .
zp(pr ) (p r )  .  .  . (p r - t ) (p r ) (p t * t ) (Y ,  Dt+ , ,a t+ t )a  I
zp(p t ) (p r )  .  .  . (p t - r ) (p , )  (Y ,  B t+ f l i ,+ r ) ,  F*
zp(pt)(pr)  .  .  . (p ' - t ) (pr)(Y, Ds)u I
Zp(pr)(pr)  .  .  . (pt-r)(y,  Btat)a F* .  .  . r*  Zp(pt)(pr)(Y, D2y2)u I
Z p(pt)(Y, BzAz),  F.  Z p( 'pt)(Y, Dt,yt)a I
Z  p \Y ,  Bry t ) ,  F .  Z  p (Y,  ydu

By IVa and IVb, for every production of the form AB -- C D e P, there are
productions of the form Zp\X,aC) --) (AB -- CD)ZI\X,aA) and (y'B -'

CD)\X.Dp) --r \X,BP) in fi. These productions simulate the transitions of
the  fo rm (p t * r )  . (p , - t )Zp(X, r ,C, )Aa |  (p r * t )  .  .  . (p , - t ) (p , )Zp \X, r ,A , )yu
a n d  Z p ( p r ) . . . ( p , - r ) ( p " ) ( Y , D , A , ) u l  Z p ( p t ) . . . ( p " - r ) ( ) ' ,  B " A , ) w  r n  I v I  ,  w h e r e
T , s :  t  +  1 , t , . . . , 1 .  s o  C l a i m  B  h o l d s .  t r
All other derivation and transition steps in G and M are investigated in Claims
A and C.

Clairn C. )zp +' \'"1"' in G
l , ) ' ,  p , , p l  € V * ,  Z , r  e  l { 2  U N ,
there are A : tr, Y e ,A/ and for

Busis Let i :  0.  Then Azp, +o
l r
lvl .

imp l ies  u (Z ,azp) ,  F*  u (A,Y)u '  tn  M,  where
A , Z  € .  N , a , w ' e  T *  a n d u , u  €  l * .  F o r  l r l  : 1 ,
r  :  x1r2 ,  r r , r2  €  N,  there  are  A -  12 ,  Y  :  € .

)zp. in G. Clearly, u(2, azB)w l0 u(2, azB)u in

I'nduct'io'n Hypothesis Assume that the implication
i I 9., where g is a positive integer.

in Claim C holds for every

Inducti,on Step Consider any derivation of the form \z p. +o+t ^'a Lt' and express
i t  a s  ) z p  + s  \ ' r p ' )  \ ' A p ' ,  w h e r e  r , U , z  e  I V 2  U N ,  \ , 1 f , , \ ' , 1 1 , ' € V * .

By  the  induc t ion  hypothes is ,  'u (Z ,azB)w as  ,u (A,Y)a ' l  , (A ' ,Y ' ) r ' i n  Iv I ,
' t i ,) 'u)'ul € f*. Next, we examine the derivation \ 'r l" '+ \ 'Ap'in G.

Let A ---  BC € P, t r  :  A,  A :  UtAz * BC, where A,B,C e l / .  Then,
XAp '  =+  \ 'BCp ' [A- - - ]  BCI  in  G.  By  Vb,  Zz(A,B)  - * '  Zp \C,e)  €  R,  so
wZp( r ,A t )u t  wZp(yr , r ) ,  in  M, ,  where  u t  e  f * .  n

Observe that Claim C holds.  By Claims A, B, and C, L(G) g L(M) holds.

Tlre complete proof of the second inclusion, L(M) e LG), unfortunately ex-
ceeds the page limit of this paper, so we leave it on the reader and we only
shortly outl ine its structure.

The proof of this inciusion is based on the form of computation of flip-
pushdown automata, where there can be identified some main parts in the corl-
putation, whicir are closely linked to the corlesponding derivation sequences
in the grammars restricted in the vertical way described before. Bv this it is



On Vertical Grammatical Restrictions that Produce an Infinite Language Hierarchy t 7 7

proved that these automata can simulate every derivation in the vertically re-
stricted gralnmar from the bottom, where the parsed sentence is read and pro-
cessed colurnn-by-colurnn. Therc is thc pushdown flip perforrned between every
two consecutive columns, so the context-sensitive derivations on the column's
boundaries can be efficiently simulated on the pushdown.

By this, L(AI) g LG) is proved and thtrs Thcorcm t holds. I

From the previous result, some corollaries follow. To formalize them, consider
a phrase-stntcture grammar Gi, in Kuroda normal form satisfying the vertical
restrictions from Theorem 1, which generates every w € L(G i) by using exactly
i  columns. Name this grammar as ani-column gramrna7 where i>I .  Denote
KNF1 the family of languages generated by i-column grammars.

Corol lary 1.  FPDAi-r  :  KNFI

Coro l la ry  2 .  CF :KNF1 C KNF2 C . . .  C  KNF."  -  RE

Conclusions

The introduced restrictions preserve all forms of derivation rules defined by the
Kuroda norrnal forrn of phrase-structure grammars. Notice that there were no re-
strictions on the number of derivation steps in the particular columns introduced,
but only the order of context-sensitive derivations on boundaries was restricted.
As a result, rve found a new infinite language hierarchy generated by grammars
restricted in this way, witere the lorvest family of languages in this hierarchy is
equal to the context-free languages and the highest family corresponds to the
family of recursively enumerable languages. This resuit is very interesting in the
forrnal language theory and extends the area of infi.nite language hierarchies by
a new type.

This work has been supported by the Grant Agency of Czech Republic arants I,{o.
20 1 /07/0005.
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