
Sample-Efficient Model-Free Reinforcement Learning
with Off-Policy Critics

Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, and Ann Nowé
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1 Introduction

Sample efficiency is key to many applications of reinforcement learning in the real
world, for instance when learning directly on a physical robot [1]. In discrete-action
settings, value-based methods tend to be more sample-efficient than actor-critic ones
[2]. We argue that this is because actor-critic algorithms learn a critic Qπ , that must ac-
curately evaluate the actor, instead of Q∗, the optimal Q-function [3]. Some algorithms
allow the agent to execute a policy different from the actor, which the authors refer to
as off-policy, but the critic is still on-policy with regards to the actor [4,5]. We propose
a new actor-critic algorithm, inspired from Conservative Policy Iteration [6], that uses
off-policy critics that approximate Q∗ instead of Qπ .

2 Bootstrapped Dual Policy Iteration
Our algorithm, fully described in [7], is divided in two parts: off-policy critics, and an
actor that is robust to off-policy critics. Our critic learning rule, inspired by Clipped
DQN [8], is given in Equation 1. This learning rule is used to train 16 critics, each
of them on distinct 256-experiences batches sampled from a single shared experience
buffer, as suggested by [9]. Our actor learning rule consists of, after every time-step,
updating each critic i on a batch Bi of experiences, then sequentially updating the actor
with Equation 2 with every batch B1...B16:

QA,i(s, a)← QA,i(s, a) + α
(
r + γV (s′)−QA,i(s, a)

)
∀(s, a, r, s′) ∈ Bi (1)
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Fig. 1. BDPI outperforms many other algorithms in hard-to-explore, highly-stochastic and pixel-
based environments.
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V (s′) ≡ min
l=A,B

Ql,i
(
s′, argmaxa′ Q

A,i(s′, a′)
)

π(s)← (1− λ)π(s) + λΓ (QA,i(s, ·)) ∀ i,∀ s ∈ Bi (2)

with QA,i and QB,i the two Clipped DQN Q-functions of critic i, that are swapped
every time-step, and Γ the greedy function, that returns the action having the largest
Q-Value in a given state.

3 Experiment
We compare BDPI to a variety of state-of-the-art reinforcement-learning algorithms in
three environments: Table [7], LunarLander and FrozenLake (OpenAI Gym), and Hall-
way 1. Figure 1 shows that BDPI largely outperforms every other algorithm, even in the
pixel-based 3D Hallway environment. More importantly, BDPI outperforms ABCDQN,
the critics of BDPI used with no actor, and BDPI/mimic, that uses a different actor
training rule [7]. This demonstrates that both our actor and critic learning rules advance
the state of the art in sample-efficient reinforcement learning. Our results are further
illustrated by our robotic wheelchair demonstration, also submitted to this conference.
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