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Abstract. Mathematical models of heat and mass transfer and deformation pro-

cesses of biomaterials are investigated, taking into account such properties as 

memory-effect (eriditarity), self-organization, deterministic chaos, heterogenei-

ty of structure, variability of rheological properties.  The obtained results of 

numerical modelling of non-isothermal moisture transfer and deformation of 

biomaterials taking into account fractal structure make it possible to estimate – 

based on the type of material and its thermo-mechanical characteristics –  the 

residual deformation of the material. A mathematical rheological model of two-

dimensional visco-elastic deformation of biomaterials with regard to memory-

effect and self-organization is constructed, which is described using equilibrium 

equations with fractional order. The relation between the two-dimensional 

stress-deformation state of biomaterials for the rheological models of Maxwell, 

Kelvin and Voigt, which are presented in the integral form, was obtained. The 

aspects of the algorithm of numerical implementation of two-dimensional 

mathematical model of visco-elastic deformation in fractured media are pre-

sented. The method of splitting fractional-differential parameters of models was 

adapted, which was used in the problems of identification of non-integer pa-

rameters of models. The results of the identification and numerical implementa-

tion of the mathematical model of heat and mass transfer processes of biophysi-

cal materials are considered, taking into account the fractal structure. 

Keywords: eriditarity, biophysical process, non-integer integro-differentiation 

apparatus. 
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1 Introduction 

The biophysical process is often characterized by the simultaneous influence on the 

material of several factors - load, moisture and temperature. Changing at least one of 

them in the biomaterial, to which belong transplant, implants, joints, medical silicon, 

leads to formation of deformation and its transition from one type to the other, result-

ing in the total or partial restoration of the original physical state. This ability of the 

material characterizes the presence of the memory-effect, which is based on residual 

deformations. In addition to residual memory, biomaterials are characterized by sto-

chastic heterogeneity of the structure and significant variability of rheological proper-

ties. To investigate the above-mentioned properties in biophysical materials, as well 

as deterministic chaos, the complex nature of spatial correlations and self-

organization is possible by formal means of fractional integro-differential operators 

[1, 10]. This approach provides the basis for the development of mathematical models 

of non-equilibrium biophysical processes with a fractal structure. At present, a very 

small number of works [7, 8] is devoted to the development of algorithms and soft-

ware for studying the processes of deformation and heat-moisture transfer, taking into 

account the memory-effect-properties and self-organization of materials, which al-

lows us to estimate the residual and elastic stress values. 

2 Problem formulation 

The mathematical rheological model of two-dimensional visco-elastic deformation of 

biomaterials, taking into account eriditarity (memory-effect) and self-organization, is 

described using equilibrium equations with a fractional order    10    in spa-

tial coordinates 
1x  and 
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where 
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ijR  are relaxation kernels of fractional-differential models, which are dependent on 

time t , temperature T  and moisture U ;  122211 ,,  T
 is a deformation vec-
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tor, components of which are dependent on time t  and spatial variables 1x  and 2x , 

       2121 ,0,0
~

,0,,, llTDDxxt  ,  TTTTT 321 ,,    is deformation  

vector, components of which are dependent on temperature variations T  and mois-

ture content U : 

,11111 UTT    ,22222 UTT    ,03 T  

22112211 ,,,   are coefficients of thermal expansion and moisture-condition 

shrinkage;
ijC  are components of the elastic tensor of an orthotropic body: 
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where   is shear modulus in plane, 
122211 ,, ЕEE  are Young’s moduli, 21,  are 

Poison’s ratios. 

Let us set the following boundary conditions: 

 ,0
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and initial conditions, respectively: 
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The relationship between the components of stress  122211 ,,  T  and 

strain  122211 ,,  T  for two-dimensional fractional-differential rheological 

models, respectively, can be written as follows: 

Voigt’s model 
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  is elastic modulus of an elastic element of a Voigt’s body, 10   ; 

Kelvin’s model 
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where 
1  is elastic modulus of an elastic element of a Voigt’s body, 

2  is elastic 

modulus of an elastic element,  ,  are fractional derivatives and 1,0   ; 

Maxwell’s model 
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where 
2  is elastic modulus of an elastic element for Maxwell’s model,, 

10   . 

If we put ,0 1  in relations (5) - (7), we get the classical two-dimensional 

Voigt’s model in the case of orthotropy.  Relations (8) - (13) will describe the classi-

cal Maxwell’s and Kelvin’s models at fractal values ,1 1 . 

For the integral representation of relations (5) - (13), we consider the properties of 

fractional derivatives [5], the definition of fractional derivative ,   10  : 
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as well as the Laplace transform method [9]. 
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Thus, the relations describing the relationship between stress and strain (5) - (13) 

can be rewritten after the corresponding transformations in the integral form. 

Two-dimensional fractional-differential Voigt’s model: 
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Two-dimensional fractional-differential Kelvin’s and Maxwell’s models: 
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3 A numerical method for the realization of two-dimensional 

fractional-differential rheological models 

To implement the numerical method,  we introduce the  space-time grid  in the   

region D : 
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Given the Riemann-Liouville formula [10], the difference approximation of a frac-

tional derivative   10    by coordinates 1x , 
2x  can be written as follows 
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where    is a Gamma function. 

Given (20), the finite-difference approximation of the system of differential equa-

tions (1) - (2) will take the form: 
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The boundary and initial conditions (3) - (4) in the finite-difference form are writ-

ten, respectively: 
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4 Splitting two-dimensional fractional-differential kernels 

Let a force act on a wooden specimen along the axis OX. Then from the components 

of the stress tensor 011  , and 022  .  

Since it is known that the average stress is specified by the formula: 

  ,
3

1~
2211    (25) 

then in this case 113
1~   . 

The stress tensor deviator then takes the form: 

   ,

3
10

0
3

2
~

11

11







 ijijij tS  (26) 

where 










.,0

;,1

ji

ji
ij  is the Kronecker symbol. 

The strain tensor deviator will take the form: 

  
 

 
,

3
10

0
3

2
~

1122

2211









 ijijij ete  (27) 

where  .
3

1

3

1~
2211  e   

The displacement equation [6] takes the form: 

  
 

    

t

ijзс

ij

ij dSt
tS

te
0

,
2

1

2



 (28) 

where   tзс  is shear creep kernel,   is shear modulus. 

The equation of volumetric deformation (strain) is written accordingly [11]: 

  
 

    ,~1~

0

 

t

об dt
BB

t
t 


  (25) 
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where   tоб
 is volumetric creep kernel, B  is volumetric modulus of elasticity 

associated with the longitudinal modulus of elasticity  
11  and elastic Poisson's ratio 

0  by the formula 
 0

11

213 


B .  

Based on the creep data of stretched or compressed specimens, using the measured 

values of longitudinal  t11  and transverse  t22  deformations, we can construct 

functions of longitudinal  t11  and transverse  t22  creep. 

We write the equations of the processes of longitudinal and transverse deformation 

of a wooden specimen that is stretched by stress  t11  [11]: 

         ,
1

0

111111

11

11 










  

t

dttt  (30) 

         ,
0

111211

11

0
22 











  



t

dttt  (31) 

where  00    is the value of the elastic Poisson ratio. 

For the component 11e  from (27) we have: 

 

         

     

 
         .

3

2

3

12

3

2

1

3

2

3

2

0

1112011

11

11

11

0

0

111211

11

0

0

111111

11

221111


















































t

t

t

dttt

dtt

dttte

 (32) 

From (26) it is known that 1111 3
2 S . Then 1111 2

3 S  and we get: 

 

   
   

 

      ,
1

1

1

0

1111

11

0

0

11

0

12011
11

11

0
11















































t

зс

t

dSttS

dS
tt

tSte

 (33) 

where  
   

.
1 0

12011











tt
tзс

 

The creep equation in the case of stretching will take the form: 
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             .
21

0

111211

11

0

0

111111

11
























  




tt

dttdtt  (34) 

Since  ~311  , then 

 

       

 
 

   
 

 
      ,~~213

~

21

2~213

~3
21~3

21

011

0

0 0

12011

11

0

0

12

11

0
11

1111

0




























































































t

об

t

t

dttt

dt
tt

t

dtttt

 (35) 

where 
   

.
21

2

0

12011










tt
об

 

For fractional-differential models of the shear and volumetric creep kernel, it can 

be written for each model as follows: 

for Voigt’s model 

 

  
 

   
 

 
  ),

12

12
(

12

21

211
,0

21

11
,

0

1




































































tE

tE
t

tFзс

 (36) 

 

  
 

   
 

 
  ),

12
2

12
(

212

21

211
,0

21

11
,

0

1




































































tE

tE
t

tFоб

 (37) 

for Kelvin’s model 

 

  
 

 
 

 
 

 

 
 

  ),
12

12
(

12

2121

21112
,0

2121

2111
,

1

021

21
































































tE

tEttKзс

 (38) 
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   
 

 
 

 
 

 

 
 

  ),
12

2

12
(

212

2121

21112
,0

2121

2111
,

1

021

21




































































tE

tEttKоб

 (39) 

5 Numerical implementation of a mathematical model  

Considering the previous studies [2, 3] regarding the identification of fractional-

differential parameters of models, we present the identification results for the rheolog-

ical Maxwell model (see Fig. 1).  

 

Fig. 1. Identification of fractional-differential parameters of the Maxwell model. 

In Fig. 2, the deformation change for a sample of biomaterial (modulus of elasticity 

GPaE 1,16 ) [12] was investigated using a Kelvin rheological model taking into 

account the fractal structure of the medium without taking it into account. Such stud-

ies have shown that by decreasing the fractional-differential parameter  , the defor-

mation functions increase more slowly, and at a value 1,0 , the deformation curve 

acquires the form in which the deformation of the material is smallest. Thus, it is pos-

sible to trace the relationship between the fractal parameters of the model and the 

process of deformation change. 
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Fig. 2. Change of the deformations of the fractional-differential Kelvin’s model. 

Our results show that the difference between the stress curves with the fractal 

structure and without taking into account for more solid types of biomaterials does not 

exceed 16.7%, whereas the difference between the stress curves for materials with a 

lower density lies between 19.6 and 24.0%. 

6 Conclusions 

Two-dimensional mathematical models of deformation processes of biomaterials have 

been constructed, which make it possible to take into account the fractal struc-ture of 

a material depending on the initial values of temperature and moisture content, 

thermo-mechanical characteristics of anisotropy, different types of material. An algo-

rithm for numerical implementation of two-dimensional mathematical models of vis-

co-elastic deformation of biomaterials has been developed, which allows calculating 

the components of the stress-strain state of a material taking into account the effects 

of memory and self-organization. 

Adaptation has been carried out of the method of splitting fractional-differential 

creep kernels, which makes it possible to determine the functions of volumetric and 

shear creep according to the experimental data of one-dimensional models of visco-

elastic deformation, to identify fractional-differential parameters of models taking 



12 

into account the fractal structure of the medium and to estimate the values of elastic 

and residual stresses of biomaterials. Presented are the results of the numerical im-

plementation of the mathematical model, taking into account the heterogeneity of the 

structure of biomaterials, self-organization and memory-effect. 
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