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Abstract. A two-dimensional mathematical model of heat transfer of 

anisotropic biophysical materials is constructed, taking into account the motion 

of the boundary of phase transitions. The influence of the main components and 

the orientation of the main axes of the heat transfer tensor on non-stationary 

temperature fields in the biophysical material is determined, taking into account 

the motion of the boundaries of phase transitions. An analytical-numerical 

method has been developed for determining heat transfer in a biophysical 

material with a moving boundary of phase transitions, and the moving 

boundaries of a phase transition in a rectangular region have been established, 

taking into account the main axes of anisotropy. Algorithms of a nonlinear 

mathematical model are constructed under variable temperature conditions of 

the medium. The integrals along the phase transition boundary are determined 

numerically. All other values included in this equation are calculated according 

to the physical and thermal characteristics of a particular material. 

Keywords: phase transitions, mathematical model, heat transfer, analytical-

numerical method, anisotropy, biophysical material. 

1 Mathematical model of heat transfer in a biophysical material 

of rectangular cross section 

The purpose of this study is to construct a two-dimensional mathematical model of 

heat transfer in biophysical materials of rectangular cross sectio
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),,( 222111 LxLLxL   taking into account the phase transition boundary. The 

outer contour of such material in variables 21, xx  is described by the surface equation 
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In the process of heat exchange of biophysical material with the environment, a 

dried zone is formed, extending from the outer surface to the depth of the body. We 

assume that the dried and moisture zones of the biophysical material are separated by 

a cylindrical surface, the generatrices of which are parallel to the axis of the material 

[1]. The equation of such a surface is represented in the form 

        210 ,,, xxFyxFm , (2) 

where    is unknown time function. 

We also assume that in the dried zone the moisture has been removed, and in the 

remaining volume it has been preserved. The moisture content remaining in the 

biophysical material is determined by the formula   VVVW mL /  , where V  is the 

body volume; mV  is the dried zone volume; L is the moisture density.  

The temperature distribution  ,, 21 xxT  of the biophysical material in the dried 

zone is described by the equation: 
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The indices sav ,,
 

denote the components of vapour, air, and skeleton, and 

sav CCC ,,, , sav  ,, are porosity, heat capacity, the density of vapour, air, 

skeleton of the material, respectively; ij  are components of the thermal conductivity 

tensor; T  is temperature;  ,, 21 xxF
 
is  the summand characterizing the internal 

source. 

The main thermal conductivity coefficients are determined through the thermal 

conductivity coefficients of anisotropic biophysical material and a one-to-one 

coordinate transformation is established: 
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The variables  21, xx   coincide with the main directions of the anisotropy of the 

thermal conductivity of the plate. 

If we pass on to variables     2
2/1

221
2/1

11 /,/ xx   , then in the context  of 

heat transfer we use the equation 
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It is important to obtain the boundary conditions on the surfaces of the anisotropic 

biophysical material in variables 
11

 , 2 : 
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  , iiiH  /~ , i
~  are heat exchange coefficients. 

From this surface, temperature reduction process moves inside the body. The 

boundary conditions of heat exchange (6) are given on the side surfaces. The surface 

that separates the dry and moist zones will have an oval cylindrical shape, and when 

completely dried, it is pulled into a line which is the axis of the bar. Given that the 

volume of the dried-up zone of the bar is a function of time, we present the equation 

of the boundary of the dried and moist zones in the form: 
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1  ,    is so far unknown function of time  .  

We introduce the following values and variables:     mПm TTTT /,, 21 , 

mmmm aaac //   , a *
, mmmm ac /1/  , where mП TT ,  is temperature 

on the contour of the biophysical material and at the phase transition boundary, 

respectively. 

Given the conditions of continuity of heat flow between the surfaces F0 and Fm, we 

obtain an expression for the value : 
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 The value of the so far unknown function of time  
 
at the initial moment of the 

heat transfer process is zero   00  . After the process is completed, we have 

  1,0,0 21   . Thus, for the accepted notation, we get that 1  

at 0*    and 0  on the phase transition line mF . 

For further studies, the equation of the contour of the cross section of the 

biophysical material and the line separating the dry and moist zones can be written as: 
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From (10), we define explicitly the equation of the phase transition curve in the 

biophysical material: 
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The signs "+" and "-" before the root refer to cases 02   and 02  , 

respectively. The sign "  " under the root corresponds to the case
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2
2  . 

2 Construction of an analytical-numerical method for imple-

menting a mathematical model. Identification of moving 

boundaries of phase transition 

To construct an analytical-numerical method for implementing the mathematical 

model of anisotropic biophysical material with allowance for the moisture 

evaporation zone, the heat balance equation in the region bounded by the outer 

contour of the biophysical material and the contour of phase transition boundary plays 

an important role [6, 7]: 
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If over time  , the volume of the dried zone of the material during heat transfer 

increases by V , then the amount of heat absorbed due to the phase transition is 

determined by the dependence 

    0, FFVTTcQ mmmm   ,  (13) 

where  0, FFV m  is the volume of dried zone per unit length of the material, ПS  is 

the surface area of the cross-section of the specimen, ФS  is the cross-sectiona area of 

the moist zone surrounded by the contour mF =0; the m index denotes various 

previously identified technological characteristics of a biophysical material at the 

boundary of a phase transition. 

The given flow Q
 
is defined by the flow on the surface of the phase transition 
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We pass on to the boundary at 0*  . Then from expressions (13), (14) we 

obtain  
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On the basis of (12), (14), (15), we obtain the equation of the heat balance taking 

into account the moving boundary of the phase transition.  
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 This is the main equation for constructing an analytical-numerical method for 

implementing the mathematical model, taking into account the moving boundary of 

the moist and dried zones of biophysical material in conditions of heat transfer. 

To calculate the integrals in formula (16), it is necessary to have explicitly the 

equations of the line of the phase transition contour, and also to establish the 

boundaries of the corresponding integrals. In particular, given the equation of the 

boundary of moist and dried zones of biophysical material (7), we find 
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Since at the initial point in heat transfer time
 

  00  , we get: 

  212,11   ,
 
  432,12   . 

The double integrals in the heat balance equation (16) over the surface between the 

closed contour mF  and the outer contour 0F will be found as the difference between 

the integral over the surface of the full cross-section of the material and the integral 

over the surface ФS bounded by the contour mF . We calculate the integral over the 

outer contour. 

So, we have 
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Thus, based on the above mathematical transformations, we obtain an expression for 

determining the first additive component of the integral over the outer contour (17). 

  



























































 2
4

2

3

2

1
1

11
2

2
2

2

1

1
2
11

21

1221 1
4

1














lL

lll

mlml
dl

L
n

 (18) 



  .
1

4 1
2
2

2

1
2
11

1
113

3

1
1

11
2

2
2

2

2
4
2

11 




















dlLlL

ll

l











 

























































Similarly to the above considerations and mathematical transformations, we present 

the contour integral  1dxdl   in (17). Then we get 
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Thus, based on the performed mathematical calculations, we obtain the expression 

for finding the second integral over the contour of the biophysical material in formula 

(17) to calculate the integral over the outer contour. 

Thus, the complete closed-contour integral
0L  is calculated by formula (17) by 

substituting relations (18) and (19). 

Now let us pass on to finding the volume of the dried zone of the biophysical 

material, which is assigned to a unit of length, and which is between the 

planes 0,00  mFF . This volume is determined by the formulas: 
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Let us determine the derivative of the volume of the dried zone of the biophysical 

material in time, taking into account the time dependence of the magnitude  *
 
and 

the time dependence of the upper boundary of the integral. If the integration 

boundaries are functions of , then applying the rule of differentiation of a complex 

function from several variables, we define 
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 We represent the derivative of the volume of the dried zone in the following way 
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where  J  is an integral in (22),  A  is the second additive component in (23), 
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Further, according to (16), it is necessary to determine the integral over the region 

ФS  bounded by the phase transition line. After cumbersome transformations we get 

 






2

21

*
4
















ds

SФ

 (24) 

 

     

   









































 











4

1
2
2

2
1

2
1

2
1

2

5

2
2

2
1

2
1

2
1

2
4

2
2

2
1

2
1

2
13

5

1

  



          






  4

1
2
2

2
1

2
1

2
1

2

3

2
2

2
1

2
1

2
1

2
4

2
2

2
1

2
1

2
13

3

3

2




         ,1
4

3
2
2

2
1

2
1

2
1

2

1

2
2

2
1

2
1

2
1

2
4

2
2

2
1

2
1

2
13

2
4

2
3  d















 

where  // 21I  is transition Jacobian from variables 21, xx  to 21, . 

We define the integral ds
S







*


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biophysical material 
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Thus, all the components that are included in the heat balance equation (16) are 

determined taking into account the moving phase transition boundary. The analysis of 

the dependences (18) - (25) shows that the integrals along the boundary of the phase 

transition (21), (25) need to be calculated numerically. To obtain a relation for 

determining the moving boundary of a phase transition, we introduce some notation 

and carry out the following transformations 
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We write the expressions for  J
 
and  A in formula (22) in the following form 
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According to (25), the integral over the outer surface of the contour is written in the 

form 
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where 321 JJJJ
ПS  . 

The integral (24) over the region Sф bounded by the phase transition line is 

represented as: 
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Taking into account the above relations (27) - (28), as well as the equation of heat 

balance (16) taking into account the moving boundary of the phase transition, we 

obtain 
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According to (28), (29), the integral over the outer contour in the balance equation 

(17) can be written as 
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So, taking into account (16), (28), (29), we get 
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Let us assume that  
ПSJJJJ  321 then the equation (32), taking into 

account phase transition boundary   1*  , takes the form 
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Note that the value       VФ JAJ ,,  is a function of  . Their boundaries of the 

phase transition need to be calculated numerically [4, 5]. All other values included in 

equation (32) are calculated by the given physical and thermal characteristics of a 

particular material, namely, the cross-sectional dimensions, the main coefficients of 

thermal conductivity, the main directions, which are calculated by the coefficients of 

thermal conductivity of a particular anisotropic biophysical material, by transition 

Jacobian [11, 12] when the equations of thermal conductivity are converted to the 

canonical form. 

A two-dimensional mathematical model of heat transfer for non-stationary modes 

under conditions of heat transfer of anisotropic biophysical material was synthesized 

and investigated taking into account the moving phase transition boundary [3]. An 

approximate analytic-numerical solution of a nonlinear problem is constructed for a 

three-step mode of heat transfer for the case when the solution of a two-dimensional 

problem   ,, 21T  is represented as a product of one-dimensional problems 

      ,,,, 221121 TTT  .The desired solution to the temperature determination 

problem is represented as:  
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where the coefficients niA  are functions of the frequency characteristics k , k  

associated with the characteristics of the heat transfer process and the magnitude of 

the phase transition; ni , ni  are determined by hyperbolic-trigonometric functions. 

Formulas were obtained to determine the non-stationary temperature at an arbitrary 

point of anisotropic biophysical material, depending on the coordinate of the phase 

transition plane, and the change in ambient temperature. 

3 Numerical analysis of the study 

The given algorithm [9, 10] is tested on a model for the ambient temperature [2, 8] 

65ct  
о
С, relative humidity  8.0  and the speed of the air 2v  m/s, 

density 581  kg/m
3
, density of absolutely dry body 4570   kg/m

3
, basis density 

415б  kg/m
3
, porosity П = 0,6, saturated vapour density 013188.0n  kg/m

3
, 

29.10 a  kg/m
3
, 1000L  kg/m

3
, moisture exchange coefficient β = 0.000976 

m/s, mass exchange coefficient 32599.22  Watt/(m
2
·degree), thermal 

conductivity coefficient  299993.0  Watt/(m·degree). 

 
Fig. 1. The dependence of the coordinate of phase transition in a material with a density of 

4800   kg/m3 for different values of the temperature of the environment (curve 1 – cT  

25 0С.; 2 – cT  45 0С.; 3 – cT 55 0С.; 4 – cT 65 0С.; 5 – cT 75 0С.; 6 – cT 85 0С.). 

 Conclusion 

A new two-dimensional nonlinear mathematical model of the heat transfer process in 

anisotropic biophysical materials was constructed taking into account the moving 

phase transition boundaries. The arbitrary orientation of the principal axes of the 



thermal conductivity tensor is taken into account, and the influence of the principal 

components and orientations of the principal axes of the thermal conductivity tensor 

and non-stationary temperature fields in anisotropic biophysical material are 

determined. An analytical-numerical method has been developed for determining heat 

transfer in an anisotropic biophysical material with a moving boundary of phase 

transitions as well as for establishing moving boundaries of a phase transition in a 

rectangular region, taking into account the main axes of anisotropy. An algorithm is 

constructed to determine the moving boundary of the evaporation zone in a 

biophysical material, depending on the anisotropic characteristics of the material, the 

parameters of the environment. 
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