
An Approach for a Fast Cost Validation

of Web-Based APIs supported by

Functional Size Measurement with COSMIC

Sandro Hartenstein1,2, Konrad Nadobny1,2,

Steven Schmidt1,2 and Andreas Schmietendorf1,2

1 Berlin School of Economics and Law, Alt-Friedrichsfelde 60, 10315 Berlin, Germany
2 Otto-von-Guericke-University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany

andreas.schmietendorf@hwr-berlin.de

schmiete@ivs.cs.uni-magdeburg.de

Abstract. Web-based APIs are increasingly important for software engineering.

Selecting a respective API and comparing the cost and value of different APIs

is currently very difficult due to the diversity of used price models and provided

functionality. In order to improve the situation, we propose the use of an inde-

pendent description of the functional size of an API that allows a fast cost vali-

dation based on the provided functionality. Our approach makes use of the

COSMIC method and applies it to the functional specification of a Web API.

Following this approach, we are analyzing the Swagger (openAPI) specification

and derive COSMIC FP from it. The approach is described under consideration

of a real Web API from the Telecommunication industry. The derived COSMIC

FP can be helpful for empirical analyses of several cost drivers, as described in

the paper too.

Keywords:

API Economy, Web API, API-Specification, OpenAPI, Swagger, COSMIC

1 Motivation and Background

The ability to develop software fast, efficient and collaboratively is a core success

factor to cope with the challenges of digitalization. The industry demands shorter

development cycles, faster delivery times, well-integrated holistic solutions and all of

this under enormous cost pressure. In this environment software engineering needs to

be highly efficient and effective. Web-based APIs (Applications Programmers Inter-

face – further APIs) are a core element to deliver software more efficiently. Develop-

ers can integrate existing services easily using APIs. Ideally these APIs are Open

APIs, which means that they follow a certain specification standard set by the Open

API Initiative and are publically available.1 The services exposed, consumed and

integrated via APIs can be as simple as raw sensor data, more complicated business

data and system functionality or even whole business processes. APIs enable the easy

103Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:andreas.schmietendorf@hwr-berlin.de

integration and service orchestration inside the business borders and far beyond. They

are the basis for Service-orientated Architectures, applications driven by Micro Ser-

vices as well as mobile Applications (Apps). APIs enable developers to create power-

ful software in an agile and efficient matter by integrating already existent third-party

functionality into their product. This makes APIs an enabler and the backbone of

digitalization.

There is an emerging market for APIs. In this market API Providers offer services

that are being used by API Consumers.2 Some big API Providers like Twitter, Ama-

zon or Google do create more revenue through their APIs than through their user-

centric applications. “The term API Economy was shaped in the context of monetari-

zation and trading of APIs and can be defined as the economic actions that are based

upon the automated, multilateral, dynamic and relatively anonymous competence

network of highly specialized partners.” 3 Within this market there are different pric-

ing models for APIs. Finding a plausible price that works for the API Provider and is

accepted by the API Consumer is important for the success of an API.4

This paper elaborates on the question whether the COSMIC-Method can be used to

create measure the functional extend of an API and determine plausibility of API

pricing. Does it allow for comparability with similar offers on the API market? Is it a

suitable method instrument to estimate resulting consumer-sided costs of using the

respective API?

The first part the paper provides an analytical overview on possible API pricing

models for APIs. The second part identifies the cost-driving elements in the API

lifecycle both from the API Provider and the API Consumers perspective. After this,

the paper focusses on the API Consumer perspective and applies the suggested

COSMIC-based concept. The COSMIC-FP methodology is being used to determine

the functionality of a provided API. This API is being determined exclusively via the

provided Swagger / Open API Specification. Details about the implementation are

hidden to the API Consumer. Alternative approaches like WSLD or API Blueprint are

not in scope for this. In the last part the paper discusses the possibility to extend the

methodology to non-functional requirements. The concept is validated by applying it

to a Swagger-specified example API.

2 Current pricing models

In order to validate the costs of different API, one needs to take a look at the different

pricing models. In general there are four different pricing model groups: Free, API

Consumers Pay, API Consumers get payed and Indirect pricing. 5

About the half of all public APIs are free to use.6 There is no limit regarding the

timeframe, the quota or any other form of usage.5 The API Provider covers the whole

costs without requesting a payment from the API Consumer.7

When API Consumers pay, there are different ways, how this can happen. Usually

the API Consumer pays a fee to use the service based on the pricing model.5 Pay-per-

use is the least complex pricing model and charges the per unit cost.5 This can be

counted by object or by simply calling the incoming API calls.8 This can also be an

104

transaction fee, that can be applied as a percentage of fixed price per transaction.8

Similar approaches are a Unit-based approach with pre-payed access quotas6 or a

Subscription model with a limited validity of time8. Tiered subscription with different

usage levels, allow the API Consumer to use the API to certain extend based on their

payment.5 Closely connected to this the Freemium pricing model, where a basic ser-

vice is provided for free, while more professional users need to pay. The Overage

pricing model can be used where a pay-per-use fee applies to every API call beyond

the quota limit of the package until the next package is activated.6 About a quarter of

all public APIs are using some kind of Freemium approach.6

In addition to these monetary models, there is also the Exchange-based payment:

retrieval of the data itself does not require payment but it is expected to receive pro-

cessed information using this data back from the recipient to make use of that dataset

and monetarize it somewhere else.7

When API Consumers get payed, they are usually be rewarded for making use of

the API. These APIs are offered on a free-to-use basis by the API Providers who

share their profits with the API Consumers based on the respective model.5 This can

be a Share of the Revenue generated via the API, or an affiliate model with commis-

sions for user-interactions via the API.5 This model might be only available from a

certain exposure.6

Indirect pricing models do not rely on a direct monetarized exchange, but passes

through the monetarization realized indirectly through the use of the API. SaaS-

Solutions for example often come with APIs in a package with the other Services.5

The API can also collect different generated data from usage and relies on transac-

tions through the APIs service, e.g. for marketplaces.9

Currently there is no unique approach to describe the functional and non-functional

behaviors of a Web APIs in a generic manner. Each Web API offering provides an

own procedure to describe her quantitative and qualitative behavior.

3 Cost-drivers in the API Lifecycle

When it comes to the costs linked to an API, taking a holistic approach is helpful. As

described in the previous section (Current Pricing Models), there are API Providers

and API Consumers.2 While the API Provider is being compensated for his efforts

based on the respective pricing model described in the previous section, the costs for

the API consumer require a closer look.10

 While in the API economy everyone could be both API Provider and API Con-

sumer at the same time, in order to determine the isolated costs of one particular API

it is important to distinguish between the costs of providing and the costs of consum-

ing a respective API. The Full Lifecycle API Management Model by CA Technolo-

gies3 gives a good overview about the required efforts. The API Consumer undertakes

efforts to discover, develop, consume, manage and monitor the API.

The better the design and specification of the API, the lower the costs for the API

Consumer. API marketplaces like Google Cloud APIs, Programmable Web, or Rapid

API are easily searchable, provide an API catalogue and classification, support the

105

registration and authorization and are an enormous help for developers to discover

APIs effectively and efficiently.11 The effort for using an API for development is

highly dependent on the functional design of the API itself on the one hand and the

quality of the specification provided by the API Provider on the other hand.12

Once integrated to the API Consumers application the API is being called whenev-

er needed. This is where the pricing model becomes relevant.2 Also costs for API

Management and Monitoring need to be considered here. API Consumers also need to

assess the costs of getting up to speed with the usage of the API, how well it fits into

their API environment and infrastructure and in addition take a closer look at potential

cost-intensive risks regarding non-existing Service Level Agreements (SLAs) or pos-

sible low service quality of the APIs.12 A good API management is critical to cope

with the agile reality of API evolution. Not only does it allow keeping track of chang-

es to respective APIs, but it also ensures a continuous development of the API-driven

competence network.13

The ideal API would have a Price-Model fitting well to the expected operational

usage and would be easy to connect to and easy to use. Following well-established

industry Standards like Open API, REST and OAuth2.0 can help to keep the addition-

al costs to a minimum.

4 COSMIC FP related strategy and mapping approach

In order to estimate the costs linked to an API, the COSMIC cost estimation method

is being linked with the API specification framework Swagger. While COSMIC pro-

vides a measuring model for the functional size of the API, Swagger provides a func-

tional specification of all methods and attributes exposed by the API Provider. Due to

the frequent use of Swagger in the industry, it is being used as an example for a

standardized machine-readable functional specification of API functionality.

Swagger is an open source framework for creating, designing, documenting, and

using RESTful Web services, closely connected to Open API: “It offers a set of rules

to semantically describe an API like a blueprint for a house.” 14

The structured data formats (mostly in JSON – Java Script Object Notation) can be

easily read by machines and people. The API specifications can be established as

contract first or as code first approach (than with annotation in the source code). Over

it out the Swagger approach provide an abstraction from technology and implementa-

tion details. Furthermore the implementation details of a web based API are hidden by

the Swagger specified interfaces.15

From the author’s point of view, Swagger can therefore be used to derive the func-

tional user requirements and on this basis the functional size of an API offering.

While the functional size is a cost driver on the API Providers site, the measurement

and comparison of functional size is immanent for the API Consumer to compare the

complexity of different APIs and the respective costs models. This is why this paper

focusses on the API Consumers point of view.

106

 The goal is to establish a generic measure (functional size oriented) to support the

following development oriented tasks: Selection of Web API offerings, Compare

different Web API offerings, Comprehensible of the function scope, Estimation of

integration efforts, Estimation of test related efforts, Estimation of operating efforts,

Collection of empirical experiences.

The measure should be based on the functional size of an API-offering that can be

determined based on the functional specification. This specification should be ma-

chine-readable (like Swagger) to enable an automated measurement. In this context it

is important to understand the concept of Swagger. A Swagger file provides the fol-

lowing information in a JSON-based format15:

 METADATA. Swagger version, title and further documentation

 SERVERS. Definition of one or more Servers and the corresponding URLs

 PATHS. Provided Endpoints and HTTP based operations

 PARAMETERS. Data types for query strings, headers or cookies

 REQUEST BODY. Description of body content and media types

 RESPONSES. Status code like 200 ok or 404 not found

 INPUT and OUTPUT MODELS. Use of common data structures

 AUTHENTICATION. methods like API key or OAuth 2

In the context of counting, one needs to consider especially the PATH (Functional

user requirements = FUR), PARAMETER (as data entries = symbol E) and

RESPONSES (as data exits = symbol X). The INPUT and OUTPUT MODELS are

features of the latest Swagger 3.0 specification and therefore rarely used in the indus-

try. This is why these sections are not part of the current model, even though they

might be taken into account at a later stage of research, as a model-based description

would enable a more exact counting of the data movements.

Table 1. COSMIC mapping approach

HTTP Operation

COSMIC FUR

CRUD

paradigm

Possible Mapping

COSMIC FP
Implicit Mapping

GET resource Read Exit (Xresponse) (+ Entry (Erequest)) Read (Rimplicite)

GET resource list Read Exit (Xresponse) (+ Entry (Erequest)) Reads (nR)

POST resource Create Entry (Econtents) (+Exit (Xcommit)) Write (Wimplicit)

POST on TASK resource Create Local extension for TASK -

PUT resource Update Entry (Econtents) (+Exit (Xresponse)) Read and Write (R+W)

DELETE resource Delete Exit (Xresponse) (+ Entry (Erequest)) Write (Wimplicit)

Swagger supports the HTTP based operations Get, Post, Put, Patch, Delete, Head,

Options and Trace. As shown in Table 1 these can be mapped to the CRUD paradigm

and data movements, while the relevant HTTP functions are only Get, Post, Put and

Delete. Going forward, the other HTTP operations will be ignored in this context.

107

Following the COSMIC approach16, functionality of software is described by four

data movement (Entry, Exit, Read, Write) types. The measurement unit is 1 CFP

(Cosmic Function Point) per data movement. The size of a functional process within

software is then the arithmetic sum of its data movement types.16

Size(functionalprocess) =  Entries +  Exits +  Readsimplicit +  Writesimplicit

The mapping possibility to hidden data movements behind the question mark can be

characterized as implicit. This means a HTTP-Get operation deals for example with

selection parameters (Entry) and with reading from the persistence layer (Read).

Therefore we are able to assume this kind of data movements. For the API Consumer,

it is unknown, which data movements are happening behind the API facade and addi-

tional software layers for example covering up potential legacy systems are hidden

behind the API Boundary.

FUR:

Get à E, X

Post à E, X

Put à E, X

Delete à E, X

Swagger
Spezifikation

Web API
(Black Box)

Other Software
(Invisible)

Data basis

Entries

Exits

Funct 1

Funct 2

Funct 3

Implicit

B
o
u
n
d
a
ry

Figure 1. Concept of the counting with COSMIC

As a result of the concept of APIs, the full extent of data movements in the software is

not visible to the API Consumer. This is why only the entries and exits defined in the

available Swagger specification are being count. This results in a measurement of the

functional size of the interface specification, not the whole layered service architec-

ture. However, as the complexity of the underlying architecture is not relevant for the

API Consumer, this measurement is well-suited for measuring the functional size of

an API.

5 COSMIC FP related measurement example

The following section contains an example of how the COSMIC-FP method can be

applied to the measurement of the functional size of an API based on a Swagger spec-

ification file. The concept has been applied as a prototype using the TMF Location

Service API as an example. The scope of the measurement considers the functional

user requirements as defined inside the Swagger based specification for the TMF

108

Location Service API. The API provides a description of the geographically correct

address of an object based on a textual input provided by the API Consumer. This

description can be a Coordinate, a point, a line or an area.17

The corresponding Swagger-file has a size of 1421 LoC (Lines of Code) and de-

scribes four different functional processes, as listed in Table 2. The HTTPS based

operations deals with Get (data receive), Post (data send) and Delete (data delete). An

extract of the Swagger file is shown in Figure 3 on the next page.

After identifying the functional processes, the data movements of each functional

process are being analyzed. In order to determine the functional size, the respective

data movements are being count and liked to the previously identified functional pro-

cess, as shown in Table 2.

Table 2. Example of Counting CFP based on the operations specified in the Swagger File

 Data

groups

Entries

E

Exits

X

Reads

R

Writes

W

Sum

CFP

GeographicLocation (GL)

GET List GL entities 3 3 1 1 0 5

GET Retrieve a GL entity 2 2 1 1 0 4

RetrieveGeographicLocation (RGL)

POST Create a RLG entity. 1 1 1 0 1 3

GET List RGL entities. 3 3 1 1 0 5

GET Retrieve a RGL entity. 2 2 1 1 0 4

RetrieveLocationRelation (RLR)

POST Create a RLR entity 1 1 1 0 1 3

GET List RLR entities 3 3 1 1 0 5

GET Retrieve a RLR entity 2 2 1 1 0 4

Hub

POST Register a listener 1 1 1 0 1 3

DELETE Unregister a listener 1 1 1 0 1 3

Total COSMIC Function Points: 39

In addition to the functional endpoints, the provided Swagger-specification-file

contains a description of the class model. This can be used to analyze the correspond-

ing data groups, as described in a UML class models or defined in the Swagger file.

Figure 2 shows the class model for the RetrieveGeographicLocation with four data

groups used differently throughout the functional processes.

 RetrieveGeographicLocation

 id :String

 href :String

 status :String

 requestedAccuracy :Float

 time ::DateTime

 geographicLocation

 id :String

 href :String

 name :String

 geometryType :String

 spatialRef :String

 accuracy : String

 @type :String

 GeographicPoint

 x :String

 y :String

 z :String

 object

 type :String

 uri :String 1

thing

1
10..1 10..1

geographicLocation

class RetrieveGeographicLocation

Figure 2. UML-class model18

109

A specific mapping problem can be found with GET. The response can be a single

entity, as well as a list of entities. From the author’s point of view, it could be useful

to take another weighting in the case of a retrieved list (n exits). With the existent

approach however, the analysis results in a number of 39 Cosmic Function Points.

Dumke et al. provide two conversation Keys to anticipate the efforts linked to the

functional size measured with CFP:

1CFP ≈ 0,07 PM (for SOA Architectures) 19 p.399 and 1 CFP = 40.8 LoC 19 p.452

Following this anticipation, the measured functional size of 39 CFP corresponds to an

effort of 2.45 Person Months (PM), or an application size of 1591 LoC.

Figure 3. Example of the TMF Location Service API Swagger File 18

6 Summary

This paper has shown a first approach to count the functional size of a web-based API

under consideration of the Swagger specification. The research is not yet finished and

several further activities are planned, like: Discussion of the approach inside the

COSMIC community, Validation of the counting correctness, Implementation of a

Swagger parser for an automatic counting, Widening of the empirical experience

(application for a high amount of APIs), Deposit of the COSMIC FP inline the Swag-

ger specification, Discussion with API marketplace providers.

Even though the prototype shows that the COSMIC-FP methodology is suitable in

the context of API measurement, some weaknesses to the approach where identified.

Especially the mappings between the HTTP operations and the data movements are

weak. It is questionable, whether mapping each HTTP-operation to a functional pro-

cess is correct. Further research will generate valuable insights about this aspect. An-

other aspect deals with the handling of the data groups, our counting approach has

considered each as an own data movement. Overall, it could be useful to identify data

attributes to reach better details. Potential efforts are not exclusively linked to func-

tional user requirements (FUR), as quality user requirements (QUR), platform user

requirements (PUR) and process or organizational requirements (POR) also might be

considered as relevant.20

110

References

1. Open API Initiative Homepage, www.openapis.org, last accessed 7/22/2019

2. Chiu, D.: Where API management is headed in 2017, CA technologies (2017)

3. Resch, O.: API-Economy − eine Situationsbestimmung,

in Tagungsband BSOA/BCloud2015, Shaker-Verlag Aachen (2015)

4. F. Stahl, A. Löser, G. Vossen: Preismodelle für Datenmarktplätze.

Informatik Spektrum 38, pages 133–141 (2014)

5. Bustos, L.: 18 API Business Models Deconstructed, GetElastic (2013)

6. A. Walling, API Pricing Strategy Webinar, pages 18ff (2017)

7. J. Musser, Open APIs: What’s Hot, What’s Not?, pages 39ff (2012)

8. Kirchoff, L.: The Ultimate Guide to Pricing Your API, Nordic APIs (2017)

9. Google AdSense Host API, developers.google.com/adsense/host, last accessed 7/22/2019

10. Masse, N.: Full API lifecycle management: A primer, Red Hat (2019)

11. Wood, C.: The Evolution of the API Marketplace, Nordic APIs (2017)

12. Norman, D.: How to make Swagger codegen work for your Team, CapitalOneTech (2018)

13. Doerrfeld, B. C.; Pedro, B.; Sandoval, K.; Krohn, A.: The API Lifecycle -

An Agile Process For Managing the Life of an API, Nordic APIs (2015)

14. Costa, J.: How-To: Getting Started with Swagger, Akamai (2019)

15. Swagger Homepage, https://swagger.io, last accessed 7/22/2019

16. ISO/IEC 19761: COSMIC: a functional size measurement method (2017)

17. Geographic Location Management API in TM Forum Open API Table,

https://projects.tmforum.org/wiki/display/API/Open+API+Table, last accessed 7/22/2019

18. Geographic Location API REST Specification, TM Forum, TMF675, R 17.5.0 p 10 (2018)

19. Dumke, R.; Schmietendorf, A.; Seufert, M.; Wille, C.: The Next Generation of Functional

Size Measurement – Handbuch der Software-Umfangsmessung und Aufwandschätzung,

570 Seiten, Logos-Verlag, Berlin (2014)

20. Dumke, R.; Fiegler, A.; Hegewald, H.; Neumann, R.; Wille, C.:

Established Software Metrics adapting to COSMIC Measurement,

SoftwareMeasurementNews, Vol. 20 No. 1 (2015)

We would like to thank especially Dr. em. Reiner Dumke for his constructive

criticism and especially the discussion of the COSMIC figures have added

significantly to the successive maturity of this work.

111

https://www.ca.com/en/blog-highlight/api-management-headed-2017.html
file:///C:/Users/GCQCU/AppData/Roaming/Microsoft/Word/:%20http:/link.springer.com/10.1007/s00287-013-0751-7
file:///C:/Users/GCQCU/AppData/Roaming/Microsoft/Word/:%20http:/link.springer.com/10.1007/s00287-013-0751-7
https://www.getelastic.com/20-api-business-models-deconstructed
https://de.slideshare.net/DavidWalling7/api-pricing-strategy-webinar-benchmark-data,
https://www.slideshare.net/jmusser/j-musser-apishotnotgluecon2012/39-API_Business_Models
https://nordicapis.com/the-ultimate-guide-to-pricing-your-api/
https://developers.google.com/adsense/host
https://developers.google.com/adsense/host
https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer
https://nordicapis.com/the-evolution-of-the-api-marketplace/
https://medium.com/capital-one-tech/how-to-make-swagger-codegen-work-for-your-team-32194f7d97e4
https://19yw4b240vb03ws8qm25h366-wpengine.netdna-ssl.com/wp-content/uploads/theapilifecycle.pdf
https://19yw4b240vb03ws8qm25h366-wpengine.netdna-ssl.com/wp-content/uploads/theapilifecycle.pdf
https://developer.akamai.com/blog/2018/07/25/how-getting-started-swagger
https://www.iso.org/standard/54849.html
https://projects.tmforum.org/wiki/display/API/Open+API+Table

