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Abstract— Active work is performed to create quantum 

computers. Quantum computers can break existing public key 

cryptography. So they can break Diffie-Hellman key exchange 

protocol. Matrix algorithms of key exchange can be considered as the 

alternative to Diffie-Hellman key exchange protocol. 

 The improved method of key-exchange protocol is offered in the 

article. The method deals with the original matrix one-way function 

and the generalized method of processing the corresponding high order 

matrix multiplicative finite commutative group.  

The general method of the insertion-enlarging method of building 

the primitive elements of the field is derived from elements of the 

matrix groups with different power.  

The article describes the results that give us the prospect of 

generating the high order multiplicative Abelian matrix groups and of 

creating key-exchange protocol, resistant to quantum computers 

attacks by means of this groups. 

Keywords— Matrix One-way Function, Abelian Finite Field, 

Asymmetric Cryptography, High order finite matrix Field, Primitive 

Matrix Element, quantum computers, post-quantum cryptography. 

 

I. INTRODUCTION  

Scientists and experts are actively working on the creation of 

quantum computers. GOOGLE Corporation, NASA the 

association USRA (Universities Space Research Association 

and D-Wave teamed-up to develop quantum processors.  

Quantum computers can break existing public-key crypto 

systems. Quantum computer solves the discrete logarithm 

problem both for finite fields and elliptic curves. Being able to 

calculate efficiently discrete logarithms, it can break Diffie-

Hellman key exchange protocol. 

Quantum computer also solves the factorization problem, so it 

can easily break RSA cryptosystem.  

Public-key cryptography is used in different products, on 

different platforms and in various fields. Many commercial 

products use public-key cryptography, the number of which is 

actively growing. Public-key cryptography is also widely used 

in operating systems from Microsoft, Apple, Sun, and Novell. 

It is used in secure phones, Ethernet, network cards, smart 

cards, and it is widely used in cryptographic hardware. Public-

key technology is used in protected Internet communications, 

such as S / MIME, SSL and S / WAN. It is used in government, 

banks, most corporations, different laboratories and educational 

organizations. Breaking existing public-key crypto-systems 

will cause complete chaos [1,2]. 

Public-key crypto systems, resistant to quantum attacks, are 

developed. But nowadays successful attacks are recorded on 

these systems [3,4]. 

II. ONE-WAY MATRIX FUNCTION 

One of the modifications of Diffie-Hellman's well-known 

method of cryptographic key exchange is the matrix algorithms 

of the exchange, the basis for which is the high order cyclic 

multiplicative matrix groups in the GF (2) field. 

Suppose that the P matrix is a primitive element of a cyclic 

matrix group. While (P) is a multiplicative group formed by this 

matrix, with the power 2𝑛 − 1, where n is the size of the square 

matrix. 

The matrix algorithm for general key development is the 

following: 

 The sender sends to the receiving party via the open 

channel  𝑢1 = 𝑣𝑃1 vector, where 𝑃1 ∈ 〈𝑃〉  is the secret matrix, 

selected by the sender, and 𝑣 ∈ 𝑉𝑛 is commonly known (𝑉𝑛 – is 

vector space on  𝐺𝐹(2) field); 

 The receiving party chooses 𝑃2 ∈ 〈𝑃〉   to send a secret 

matrix and sends to the sender  𝑢2 = 𝑣𝑃2 vector; 
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 Sender calculates 𝑘1 = 𝑢2𝑃1 vector; 

 Receiver calculates 𝑘2 = 𝑢1𝑃2 𝑣 , where 𝑘1  and 𝑘2  – 

are secret keys.  

 

It is evident, thar 𝑘1 = 𝑘2 = 𝑘, because 𝑘 = 𝑣𝑃1𝑃2 =  𝑣𝑃2𝑃1, 

while  〈𝑃〉  is a commutative group. Let 𝑣 =

(𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛) ∈ 𝑉𝑛  and 𝑢 = (𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛) ∈ 𝑉𝑛 are 

non-secret vectors from the above mentioned algorithm and   

𝑃1 = (

𝑎11 ⋯ 𝑎1𝑛 
⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

) ∈ 〈𝑃〉 

is the secret matrix. Then, according to the algorithm: 

𝑣𝑃1 = (

𝑣1𝑎11 + 𝑣2𝑎21 +⋯+ 𝑣𝑛𝑎𝑛1
𝑣1𝑎12 + 𝑣2𝑎22 +⋯+ 𝑣𝑛𝑎𝑛2

⋮
𝑣1𝑎𝑛1 + 𝑣2𝑎𝑛2 +⋯+ 𝑣3𝑎𝑛3

) = (

𝑢1
𝑢2
⋮
𝑢𝑛

)     (1) 

 

The number of variables in the system of linear equations is the 

square of the number of equations. Generally, solutions in such 

cases are not uniquely defined, and the system has infinitely 

many solutions. However, because we deal with a special types 

of matrices, the solution is defined uniquely. In addition, it is 

obvious that the solution of the system is very time consuming 

and is practically impossible in real time if the size of the matrix 

is large enough.  

 

All this makes it necessary to generate high order Abelian 

multiplication matrix group, whose primitive element will be a 

high order quadratic matrix. 

 

III. FINITE MATRIX GROUPS 

Let's consider (1 + 𝛼)𝑗, where 𝑗 = 0, 1, 2,⋯, and α represents 

the root of primitive polynomial in the 𝐺𝐹(2𝑛) field with the 

module 𝑝(𝑥).  

 

(1 + 𝛼)0 = 1   1 

(1 + 𝛼)1 = 1 + 𝛼  11 

(1 + 𝛼)2 = 1 + 𝛼2  101 

(1 + 𝛼)3 = 1 + 𝛼 + 𝛼2 + 𝛼3 1111 

(1 + 𝛼)4 = 1 + 𝛼4  10001 

(1 + 𝛼)5 = 1 + 𝛼 + 𝛼4 + 𝛼5 110011 

 

The polynomial coefficients generated by the above structure, 

are known as  the Serpinsky triangle. Serpinsky's structure 

contains a number of sub-structures, that can be used as a 

generator (generating matrix) for multiplication groups, i.e. 

primitive elements. For example, 

𝑃3 = (
1 1 1
1 0 0
1 1 0

),      𝑃5 =

(

 
 

1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0)

 
 

, 

𝑃7 =

(

 
 
 
 

1 1 1 1 1 1 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 1 1 1 1 0)

 
 
 
 

   (2) 

 

Many others examples can be provided. Their natural powers 

form the Abelian multiplicative cyclic group.  

 

It’s easy to see that natural powers of matrices 𝑃3 , 𝑃5 , 𝑃7  

𝑃3
𝑘 , 𝑃5

𝑘 , 𝑃7
𝑘 , 𝑘 = 1,2, … , 2𝑘 − 1  (3) 

 

Form the Abelian multiplicative cyclic group: 

 

𝑃3
1 = (

1 1 1
1 0 0
1 1 0

) , 𝑃3
2 = (

1 0 1
1 1 1
0 1 1

),   𝑃3
3 = (

0 0 1
1 0 1
0 1 0

) , 𝑃3
4 = (

1 1 0
0 0 1
1 0 0

), 

𝑃3
5 = (

0 1 1
1 1 0
1 1 1

) , 𝑃3
6 = (

0 1 0
0 1 1
1 0 1

),  𝑃3
7 = 𝑃3

0 = (
1 0 0
0 1 0
0 0 1

) 

 (4) 

Therefore we derived the insertion-enlargement method of 

second order enlargement of the basic structure of P3 [5]. 

 

Let’s keep the structure of the matrix   𝑃3 and enlarge it by 

elements of the set (4) as following [5]: 

𝑃32(𝑖, 𝑗) = (

𝑃3
𝑖 𝑃3

𝑗
𝑃3
𝑗

𝑃3
𝑗

0 0

𝑃3
𝑗
𝑃3
𝑗

0

),  where  i,j=0..6.  (5) 

𝑃3 matrix is called a basic structure and let’s call  𝑃3
𝑖 and  𝑃3

𝑗
 

matrices the first and the second enlarged matrice and  𝑃32(𝑖, 𝑗) 

matrix let’s call the second order (𝒊, 𝒋)  enlargement of  𝑃3.  
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The set 𝑃3
𝑘 , 𝑘 = 1,2, … , 23 − 1 is called the primary group for 

𝐹(𝑃32(𝑖, 𝑖 + 1)) group. 

We have proved the following statement: 

Any second order (𝑖, 𝑖 + 1)  enlargement of 𝑃3  𝑃32(𝑖, 𝑖 + 1) , 

𝑖 = 0. .5 , is a primitive element and forms a finite Abelian 

multiplicative group 𝐹(𝑃32(𝑖, 𝑖 + 1)) with power 23
2
– 1. 

For example, the matrix  𝑃32(0,1) is primitive, and the matrix 

[𝑃32(0,1)]
22∙3

1
+23

1
+1 is diagonal matrix: 

[𝑃32(0,1)]
22∙3

1
+23

1
+1=(

𝑃3
3 0 0

0 𝑃3
3 0

0 0 𝑃3
3

)  (6) 

All powers ([𝑃32(0,1)]
22∙3

1
+23

1
+1)

𝑖

, 𝑖 = 1,2, …   of the 

diagonal matrix are also diagonal  and because of the set 

𝐹(𝑃32(0,1)) are a finite group, when  𝑖 = 23
1
− 1, so we see: 

 

([𝑃32(0,1)]
22∙3

2
+23

2
+1)

𝑖

= (

(𝑃3
3)𝑖 0 0

0 (𝑃3
3)𝑖 0

0 0 (𝑃3
3)𝑖
) =

(

(𝑃3
3)𝑖 0 0

0 (𝑃3
3)𝑖 0

0 0 (𝑃3
3)𝑖
) = (

𝑃3
3𝑖 𝑚𝑜𝑑 𝑖 0 0

0 𝑃3
3𝑖 𝑚𝑜𝑑 𝑖 0

0 0 𝑃3
3𝑖 𝑚𝑜𝑑 𝑖

)  (7) 

 

As we perform the matrix operations correspondig to the 

module of the primary group, the matrix (7) is the identity 

matrix. That means, that the set  𝐹(𝑃32(0,1)) is a finite group.  

Note that we can consider any element of (4) as the basic 

structure. There exist the enlargement of this element using  𝑃3
0 

and 𝑃3
1 matrices, that is primitive.  

For example, following enlargements are primitive:  

(

𝑃3
1 𝑃3

1 0

0 0 𝑃3
1

𝑃3
0 0 0

) , (

𝑃3
1 0 𝑃3

0

𝑃3
1 𝑃3

1 𝑃3
1

0 𝑃3
1 𝑃3

1

) , (

0 𝑃3
1 0

0 𝑃3
1 𝑃3

1

𝑃3
0 0 𝑃3

1

) (8) 

 

 

Consider higher order sub-structures of the Serpinsky 

triangle:  

𝑃5 =

(

 
 

1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 1 1 1 0)

 
 

 

It is easy to check that 𝑃5  is a primitive element. It means 

that  𝑃5
𝑘 , 𝑘 = 1,2,… , 25 − 1 is a finite Abelian multiplicative 

group. 

Consider basic structure 𝑃3  and enlarge it by  𝑃5
0  and 𝑃5

1 

matrices. 

There exist such enlargements of  𝑃3 matrix by 𝑃5
0 and 𝑃5

1 

matrices, that are primitive elements. For example: 

 

(

𝑃5
1 𝑃5

1 𝑃5
1

𝑃5
1 0 0

𝑃5
0 𝑃5

1 0

) , (

𝑃5
1 𝑃5

1 𝑃5
1

𝑃5
1 0 0

𝑃5
1 𝑃5

0 0

)   (9) 

 

matrices are primitive elemenents. Therefore the set 

𝐹(𝑃3×51(𝑃5
0, 𝑃5

1)) is a finite Abelian multiplicative group. 

It is easy to check that  

[𝑃3×51(𝑃5
0, 𝑃5

1)]2
2∙51+25

1
+1 = (

𝑃5
2 0 0

0 𝑃5
2 0

0 0 𝑃5
2

)  (10) 

is a diagonal matrix. With the analogy to (7) we see that 

([𝑃3×51(𝑃5
0, 𝑃5

1)]2
2∙51+25

1
+1)

𝑖

, 𝑖 = 1,2, …  matrices are 

diagonal, and when 𝑖 = 25
1
− 1, we see  

(

𝑃5
2𝑖 𝑚𝑜𝑑 𝑖 0 0

0 𝑃5
2𝑖 𝑚𝑜𝑑 𝑖 0

0 0 𝑃5
2𝑖 𝑚𝑜𝑑 𝑖

)  (11) 

 

the identity matrix. That means, that the set 

𝐹(𝑃3×51(𝑃5
0, 𝑃5

1)) is a finite Abelian multiplicative group with 

power of 23×5
1
− 1. 

Consider now enlargements of order k=2  𝑃5
𝑖  , 𝑖 =

1,2, … , 25 − 1  of the primitive element  𝑃5  using elements  

𝑃5𝑘(𝑃5
0, 𝑃5

1), 𝑘 = 2.  There exist such enlargements, that form a 

primitive matrix. For example: 

𝑃5𝑘(𝑃5
0, 𝑃5

1) =

(

  
 

𝑃5
1 𝑃5

1 𝑃5
1 𝑃5

1 𝑃5
0

𝑃5
1 0 0 0 0

𝑃5
1 𝑃5

1 0 0 0

𝑃5
1 0 𝑃5

1 0 0

𝑃5
1 𝑃5

1 𝑃5
1 𝑃5

1 0 )

  
 
, 𝑘 = 2 

 (12) 
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Using the software developed by us, it could be seen that 

the matrix  (𝑃5𝑘(𝑃5
0, 𝑃5

1))
𝑖

 , where  

 𝑖 = 24∙5
𝑘−1
+ 23∙5

𝑘−1
+ 22∙5

𝑘−1
+ 25

𝑘−1
+ 1, 𝑘 = 2  is a 

diagonal matrix: 

(𝑃5𝑘(𝑃5
0, 𝑃5

1))
24∙5

𝑘−1
+23∙5

𝑘−1
+22∙5

𝑘−1
+25

𝑘−1
+1

=

(

  
 

𝑃5
4 0 0 0 0

0 𝑃5
4 0 0 0

0 0 𝑃5
4 0 0

0 0 0 𝑃5
4 0

0 0 0 0 𝑃5
4)

  
 

 

 

All powers (𝑃5𝑘(𝑃5
0, 𝑃5

1))
𝑖×𝑗

, are diagonal matrices with 

elements 𝑃5
𝑖  , 𝑖 = 1,2, … , 25 − 1  from primary group on 

diagonal. When  𝑗 = 23
𝑘−1
− 1, we have the identity matrix: 

 

 

(

 
 
 
 

𝑃5
4𝑗 𝑚𝑜𝑑 𝑗

0 0 0 0

0 𝑃5
4𝑗 𝑚𝑜𝑑 𝑗

0 0 0

0 0 𝑃5
4𝑗 𝑚𝑜𝑑 𝑗

0 0

0 0 0 𝑃5
4𝑗 𝑚𝑜𝑑 𝑗

0

0 0 0 0 𝑃5
4𝑗 𝑚𝑜𝑑 𝑗

)

 
 
 
 

  

= 

(

 
 
 

𝑃5
0 0 0 0 0

0 𝑃5
0 0 0 0

0 0 𝑃5
0 0 0

0 0 0 𝑃5
0 0

0 0 0 0 𝑃5
0)

 
 
 

 

 

 

CONCLUSIONS 

The results, described above, give us the prospect of generating 

the high order multiplicative Abelian matrix groups and of the 

creating key-exchange protocol, resistant to quantum 

computers attacks. 
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