
DejaVu: Recycling Tuning Setups in
Hive Query Compilation

Edson Ramiro Lucas Filho1, Eduardo Cunha de Almeida1, and Stefanie Scherzinger2

1 Universidade Federal do Paraná, Brazil
{erlfilho,eduardo}@inf.ufpr.br

2 OTH Regensburg
stefanie.scherzinger@oth-regensburg.de

Abstract. SQL-on-Hadoop processing engines have become state-of-the art, yet
the skills required to tune these systems are rare in the job market. Automated
tuning advisers can profile the low-level MapReduce jobs and propose appro-
priate tuning setups, but up-front tuning is time consuming and costly. In this
demo, we present DejaVu. DejaVu integrates with Hive and effectively reduces
the tuning costs by caching tuning setups for partial query plans: When the SQL-
on-Hadoop engine Hive compiles SQL queries into physical query plans, single
MapReduce jobs tend to be similar between query plans. By recycling the tuning
setups for similar low-level MapReduce jobs, DejaVu can effectively cut down
the time spent profiling the TPC-H query workload in half, achieving similar im-
pact on the performance of the jobs. While we employ Starfish in this demo,
DejaVu can leverage any third-party MapReduce tuning adviser.

1 Introduction

More than a decade after the publication of the seminal MapReduce paper [1], we can
observe a clear preference among Hadoop or Spark users for higher-level query lan-
guages [5]. SQL-on-Hadoop systems compile SQL queries into query plans of MapRe-
duce jobs. Naturally, this greatly improves the productivity of data scientists. Yet com-
piling queries to query plans, and then scheduling its jobs in a cluster is only half the
battle: The underlying MapReduce framework needs to be tuned for performance.

The expertise required for allocating the right mix of physical resources and for
twiddling with the tuning knobs is rare. Also, Hive [7] currently implements almost a
1000 tuning parameters, so manual tuning is quite out of the question.

Automated tuning advisers for MapReduce frameworks rely on profiling MapRe-
duce jobs [6, 2], at the cost of imposing a runtime overhead. For instance, the Starfish
tuning adviser can cause an overhead of up to 50% [6] during profiling. Thus, when the
query workload is highly dynamic, re-tuning is costly in cloud-based environments.

In this demo, we present DejaVu, a tool that integrates with the SQL-on-Hadoop
engine Hive. Rather than contributing yet another tuning adviser, DejaVu employs third-
party tuning advisers like Starfish, but caches tuning setups for partial query plans to
avoid unnecessary job profiling. Our approach relies on two observations regarding the
query plans compiled from SQL queries: (1) The individual MapReduce jobs within a
query plan often have different resource requirements. (2) Since the jobs are generated,
MapReduce jobs tend to be similar across query plans.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



DejaVu: Recycling Tuning Setups in Hive Query Compilation 119

Regarding observation (1), we conclude that each job benefits from having a custom-
tailored tuning setup, i.e., the configuration of its tuning parameters. In contrast, uni-
formly applying a tuning setup to all jobs requires maximum settings, and can be waste-
ful. Consequently, we pursue non-uniform tuning and assign one tuning setup per job.

Let us now consider observation (2). We regard two MapReduce jobs as similar
from the perspective of tuning, if they have the same code signature. Intuitively, the
code signature of a MapReduce job captures the SQL operators implemented by this
job, as well as the expected size of the input. This information is available through
the Hive query compiler. Our hypothesis (which we can confirm in our experiments) is
that jobs that share the same code signature benefit from the same tuning setups. We
therefore may recycle tuning setups for similar jobs, to reduce profiling time.

Let us consider the TPC-H queries compiled on Hive-0.13, which yields 106 MapRe-
duce jobs3. For 71% of these jobs, there is at least one other job with the same code
signature. Fewer than a third of the jobs have a unique code signature.

This inspires the idea of recycling tuning setups for similar jobs. Over time, we may
even be able to assign tuning setups for ad-hoc queries, which we have not encountered
yet. In fact, ad-hoc queries are prevalent in many query workloads [8], yet tuning advis-
ers for MapReduce frameworks rely on profiling the complete workload up front. Thus,
our approach can be used in environments where traditionally, tuning advisers fail.

As we show shortly, by non-uniform tuning and by recycling tuning setups, we can
effectively reduce profiling costs. Note that earlier, we have reported on a predecessor
tool called Chameleon [4]. Like DejaVu, Chameleon performs non-uniform tuning. Yet
in Chameleon, tuning setups are only assigned manually to MapReduce jobs. In con-
trast, DejaVu delegates job tuning to third-party tuning advisers and is fully automated.
In [3], our full paper presents in greater detail the caching mechanism of DejaVu and
the experimental results.

2 Caching Code Signatures

We next introduce code signatures, and the code signature cache as the datastructure at
the heart of DejaVu.

The SQL-on-Hadoop engine Hive compiles SQL queries into query plans. The low-
level MapReduce jobs are annotated by Hive, and annotations are accessible via the
Hive Java API. Each job carries a list of the physical query operators that are imple-
mented by this job. Further, for each operator, an estimated input cardinality is given.

Example 1. TCP-H query 1 is compiled by Hive 0.13 to a sequence of two MapReduce
jobs. The first job is annotated with the operators Filter, Select, and GroupBy, each with
cardinality 2. The job is further annotated with the operators TableScan, ReduceSink,
and FileSink, each with a cardinality of 1. In our setting (c.f. Section 3), the estimated
input size is 7.24GB. �

We hypothesize that jobs with the same annotations have similar resource require-
ments. Therefore, they may be executed with the same tuning setups, even though their
Java code differs. In our experiments, as discussed shortly, we are able to confirm this.

3 Here, we ignore approx. 50 auxiliary jobs that are executed only locally, rather than as a
MapReduce job, so they do not require a MapReduce tuning setup.



120 Edson Ramiro Lucas Filho, Eduardo Cunha de Almeida, Stefanie Scherzinger

Fig. 1: The DejaVu code signature cache. Jobs ji are mapped to tuning setups ti, using
the code signature as cache key.

We capture the annotations by the code signature, a tuple stating the input size
(given in order of magnitude), and the annotated query operators with their cardinalities.

Example 2. We continue with TPC-H query 1. The code signature of the first job is
〈9,FileSink : 1,Filter : 1,GroupBy : 2,ReduceSink : 1, Select : 2,TableScan : 1〉 �

Figure 1 visualizes the code signature cache in DejaVu. Initially, the cache is empty.
A SQL query is compiled by Hive into the query plan (Step 1). For each of the jobs
j1, . . . , jn in this query plan, we look up the tuning setup in the code signature cache
(Step 2), using the code signature as key. For each cache miss, we employ the Starfish
tuning adviser for profiling the job and generating a tuning setup (Step 3). The tuning
setups, denoted t1, . . . , tn, are stored in the code signature cache, with the code signa-
tures of the jobs as look-up keys (Step 4). As the cache becomes populated, we observe
more cache hits (Steps 5 and 6). In the best case, we have cache hits for all jobs in the
query plan. Then, we can simply recycle the tuning setups of similar jobs, and need not
turn to Starfish for profiling at all.

3 Profiling TPC-H Queries

We have implemented the code signature cache in Java, and integrated it with Apache
Hive 0.13. We leverage tuning setups generated by the Starfish tuning adviser [6]. We
run Starfish with sampling turned off (i.e., profiling all MapReduce jobs completely), to
obtain high-quality tuning profiles. Using Starfish 0.3.04, we are tied to Hadoop 0.20.2.
We evaluate the TPC-H queries rewritten in HiveQL5. The data has been generated with
a scale factor of 10, which amounts to 10.46GB of data stored on disk.

Our experiments were executed in a cluster with three physical machines. We isolate
the master node on one machine, so that it does not influence the profiling of worker
jobs. In particular, each machine has a Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz,
4GB of RAM, 1TB of disk. All our profiling runs are configured with the out-of-the-box
tuning setup that we refer to as “Hadoop Standard”.

4 https://www.cs.duke.edu/starfish/release.html, last accessed September 2019.
5 https://issues.apache.org/jira/browse/HIVE-600



DejaVu: Recycling Tuning Setups in Hive Query Compilation 121

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
TPC-H Queries

0
200
400
600
800

1,000
1,200

Pr
of

ilin
g 

tim
e

(s
ec

on
ds

)

300
165

437 405
539

218

777
542

1236

429

123
378

149 240 285 180

777 865

456 459

1270

155

job causes a cache miss in the code signature cache job causes a cache hit in the code signature cache

(a) Total time Starfish spends profiling (no sampling): 10,396.97 seconds.

Fig. 2: The code signature cache reduces the profiling time by over 50% for TPC-H.

Recurring code signatures. We have compiled the TPC-H queries on Hive 0.13. There
is a considerable share of recurring code signatures, with 24 code signatures shared by
70% of the 106 MapReduce jobs.

We profile the 22 TPC-H queries in the order of the TPC-H benchmark specification.
Figure 2 shows the profiling time per query. In total, over ten thousand seconds are spent
on profiling. In Figure 2 We visually distinguish two groups of jobs:
1. Jobs which cause a cache miss in the code signature cache,
2. and jobs which cause a cache hit in the code signature cache.

We can observe that for the first TPC-H query, all jobs would cause a cache miss. Yet
already for the second and third queries, we’d have cache hits, even though the savings
are minor. With the code signature cache becoming more populated, we get more cache
hits, and in some cases, some substantial savings in the profiling time. For instance, for
queries Q6 and Q14, we can recycle all tuning setups from the cache. Thus, they require
no profiling at all.

You may find more details about the caching mechanism and other results in our
full paper [3].

4 Demo Outline

To make the internals of DejaVu transparent in our demo, we have built a web interface,
as shown in Figure 3:

– In the upper left, we can choose among the TCP-H queries and inspect their code.
– Upon the push of a button, we have Hive compile a query into a query plan and

submit it to be executed by Hadoop, as shown in the left.
– The queries will have their jobs profiled in the case of a cache miss. In the case of

a cache hit, the job will receive new tuning setup (generated by Starfish).
– To the right, our interface visualizes the contents of the code signature cache. We

can see how the cache is getting populated over time.
– Also, to the right we can see the rank of run times and observe the benefits of the

tuning cache.
The web-based GUI is for demonstration purposes only. At this point, DejaVu is

fully operational and integrated with Hive. Visitors will be able to interact with DejaVu.



122 Edson Ramiro Lucas Filho, Eduardo Cunha de Almeida, Stefanie Scherzinger

Fig. 3: The interactive DejaVu demo shows TPC-H queries, their query plans compiled
by Hive, and the code signature cache getting populated, as TPC-H queries are compiled
and profiled over time.

Acknowledgments We thank Herodotos Herodotou for all the support with Starfish.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI
(2004)

2. Duan, S., Thummala, V., Babu, S.: Tuning Database Configuration Parameters with iTuned.
ReCALL 2(1), 1246–1257 (aug 2009)

3. Filho, E.R.L., de Almeida, E.C., Scherzinger, S.: Don’t Tune Twice: Reusing Tuning Setups
for SQL-on-Hadoop Queries. In: ER 2019 – 38th International Conference on Conceptual
Modeling (2019)

4. Filho, E.R.L., Picoli, I.L., de Almeida, E.C., Le Traon, Y.: Chameleon: The Performance
Tuning Tool for MapReduce Query Processing Systems. In: 29th SBBD – Demos and Appli-
cations Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil (2014)

5. Floratou, A., Minhas, U.F., Özcan, F.: SQL-on-Hadoop: full circle back to shared-nothing
database architectures. Proceedings of the VLDB Endowment 7(12), 1295–1306 (2014)

6. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A
Self-Tuning System for Big Data Analytics. In: CIDR (2011)

7. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu, H., Murthy,
R.: Hive - A petabyte scale data warehouse using hadoop. In: Proceedings - International
Conference on Data Engineering. pp. 996–1005 (2010)

8. Yanpei Chen, S.A., Katz, R.H., Chen, Y., Alspaugh, S., Katz, R.: Interactive Query Process-
ing in Big Data Systems: A Cross Industry Study of MapReduce Workloads. Tech. Rep. 12,
University of California, Berkeley (aug 2012)


