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Abstract. Treatment effect prediction (TEP) plays a vital role in disease man-
agement by ensuring that the expected clinical outcomes are obtained after per-
forming specialized and sophisticated treatments on patients given their person-
alized clinical status. To address this problem, we propose an adversarial deep 
treatment effect prediction model by utilizing the potential of a large volume of 
electronic health records (EHR) data. Our model employs two auto-encoders for 
learning the representative and discriminative features of both patient character-
istics and treatments from EHR data. The discriminative power of the learned 
features is further enhanced by decoding the correlational information between 
the patient characteristics and subsequent treatments by mean s of a generative 
adversarial learning strategy. Thereafter, a logistic regression layer is appended 
on the top of the resulting feature representation layer for TEP. The proposed 
model was evaluated on a real clinical dataset and the experimental results 
demonstrate that our proposed model achieves competitive performance com-
pared to state-of-the-art models in tackling the TEP problem. 
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1 Introduction 

Treatment effect prediction (TEP), as ensuring to obtain the expected clinical outcomes 
after performing specialized and sophisticated treatments on patients given their per-
sonalized clinical status, is vital for disease management. Traditional approaches to ad-
dressing this problem have mostly relied on randomized controlled trial (RCT) studies 
[1], which urges healthcare professionals to make treatment decisions according to the 
best evidence from systematic research on both the efficacy and efficiency of various 
therapeutic alternatives [2]. Although valuable, there are several typical limitations to 
RCT studies [1]. Specifically, participants in RCTs are strictly selected and tend to be 
a “pretty rarefied population”, which is not representative of the real-world population 
that the scheduled treatments will eventually target [3].  
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Electronic health records (EHRs), with their increasingly widespread adoption in 
clinical practice, provide a comprehensive source for treatment effect analysis to aug-
ment traditional RCT studies [4-6].The different aspects of medical information rec-
orded in EHR data are highly correlated and thus provide significant potential for ex-
ploitation, for example, to extract representative and discriminative features for treat-
ment effect prediction (TEP). 

In this study, we propose a novel adversarial deep treatment effect prediction 
(ADTEP) model to anticipate treatment effects by utilizing a large volume of EHR data. 
In detail, two Auto-encoders (AE) are employed to encode the physical condition and 
treatment information of patient samples into latent robust representations. To align the 
generated treatments with the actual performed treatments, we adopt an adversarial 
learning scheme [7] and use a discriminator to differentiate the fake generated treat-
ments from the real performed treatments documented in the EHR data. With this ad-
versarial learning strategy, not only the patient characteristics and subsequent treat-
ments, but also the correlational information between them are encoded in the latent 
representation, making the generated features sufficiently representative to convey the 
essential and critical information in the EHR data.  

2 Methods 

We consider a typical clinical study of TEP, in which the EHR data record patient 
features, treatment interventions, and achieved treatment outcomes. For each patient 
sample 𝑢, we observe a set of patient features 𝒙୳, a set of treatment interventions 𝒂୳ 
conditioned on 𝒙୳, and the achieved treatment outcome 𝑦௨. The EHR dataset can be 
described as 𝒟 ൌ ሼሺ𝒙௨, 𝒂௨, 𝑦௨ሻ|𝑢 ൌ 1,⋯ ,𝑁𝒟ሽ. We propose the ADTEP model to ad-
dress the aforementioned problem. The proposed ADTEP contains seven components: 
a patient feature encoder E୶, a treatment intervention encoder Eୟ, a patient feature de-
coder G୶, a treatment intervention decoder Gୟ, a treatment intervention generator G୶ୟ, 
a treatment intervention discriminator Dୟ, and a logistic regression layer for TEP C୷. In 
detail, given a patient sample ሺ𝒙, 𝒂, 𝑦ሻ, two encoder layers E୶ and Eୟ are first employed 
to extract the latent features 𝒉௫ and 𝒉௔ from 𝒙 and 𝒂, respectively. The reconstructed 
features 𝒙ᇱ and 𝒂ᇱ can then be estimated from the latent features 𝒉௫ and 𝒉௔, using the 
decoders G୶ and Gୟ. Note that E୶ and G୶ form an AE for patient feature observations, 
and for Eୟ and Gୟ to reconstruct treatment interventions. Both AEs E୶-G୶/Eୟ-Gୟ are 
adopted to capture robust and discriminative patient feature/treatment representations 
in the latent feature vector 𝒉୶/𝒉ୟ. Consequently, the latent feature vectors 𝒉୶ and 𝒉ୟ 
are concatenated to form the input of C୷ for TEP. 

We measure the reconstruction performance for patient feature 𝒙 conducted by the 
encoder E୶  and decoder G୶ . For efficient learning of the encoder-decoder, standard 
practice is to use the Euclidean distance between the input and the generated output to 
minimize the patient feature reconstruction loss, that is,  

 ℒ௫ ൌ 𝔼𝒙,𝒂,௬∼௉೏ೌ೟ೌሺ𝒙,𝒂,௬ሻ ቚห𝒙 െ 𝐺௫൫𝐸௫ሺ𝒙ሻ൯หቚ
ଶ

ଶ
. (1) 



 

The reconstruction performance for treatment vector 𝒂 is measured by means of the 
encoder Eୟ and decoder Gୟ. Similarly to the patient feature reconstruction loss ℒ௫, the 
treatment reconstruction loss ℒ௔ can be measured as follows: 

 ℒ௔ ൌ 𝔼𝒙,𝒂,௬∼௉೏ೌ೟ೌሺ𝒙,𝒂,௬ሻ| ቚห𝒂 െ 𝐺௔൫𝐸௔ሺ𝒂ሻ൯หቚ
ଶ

ଶ
. (2) 

To encourage the reconstruction of treatments from discriminative patient features that 
are similar to real ones, so that the prediction performance can be enriched, we design 
a treatment discriminator Dୟ to differentiate the reconstructed treatment vector 𝑎෤ from 
the true observed treatment 𝑎. In particular, we employ a binary classifier to categorize 
the given input as “real” if the input is the actual treatment vector performed on patients, 
and “fake” otherwise. The adversarial loss ℒீ஺ே is defined as: 

ℒீ஺ே ൌ 𝔼𝒙,𝒂,௬∼௣೏ೌ೟ೌሺ𝒙,𝒂,௬ሻሾ𝑙𝑜𝑔𝐷௔ሺ𝒂ሻሿ ൅ 𝔼𝒙,𝒂,௬∼௣೏ೌ೟ೌሺ𝒙,𝒂,௬ሻሾ𝑙𝑜𝑔 ൬1 െ 𝐷௔ ቀ𝐺௫௔൫𝐸௫ሺ𝒙ሻ൯ቁ൰ሿ. (3) 

Given a testing patient sample with patient feature vector 𝒙, treatment vector 𝒂 condi-
tioned on 𝒙, and an unknown treatment outcome label y, we can learn the representative 
and informative features 𝒉୶ and 𝒉ୟ with respect to the patient characteristics, and sub-
sequently the treatments performed on the patient, respectively, and then concatenate 
these as ሾ𝒉୶, 𝒉ୟሿ to be fed into the treatment effect predictor C୷. Let 𝑦ᇱ is the predicted 
treatment outcome, the loss can be measured using cross-entropy as follows:  

 ℒ௣௥௘ௗ ൌ
ଵ

ேವ
∑ ሺ𝑦௨ 𝑙𝑜𝑔 𝑦௨ᇱ ൅ ሺ1 െ 𝑦௨ሻ 𝑙𝑜𝑔ሺ1 െ 𝑦௨ᇱ ሻሻ
ேವ
௨ୀଵ . (4) 

As demonstrated in the section above, our training is defined by four loss functions: 1) 
loss of GAN ℒீ஺ே, loss of patient feature reconstruction ℒ௫, loss of treatment recon-
struction ℒ௔, and loss of treatment outcome prediction ℒ௣௥௘ௗ. In summary, the objec-
tive function of the ADTEP is expressed as: 

 𝑚𝑖𝑛
ாೣ,ாೌ,ீೣ,ீೌ,ீೣೌ,ீ೤

𝑚𝑎𝑥
஽ೌ

𝐿௣௥௘ௗ ൅ 𝛼ሺ𝐿௫ ൅ 𝐿௔ሻ ൅ 𝛽𝐿ீ஺ே, (5) 

where 𝛼 and 𝛽 are trade-off parameters for balancing the importance of the correspond-
ing components. 

3 Experiments 

We conducted a clinical case study in cooperation with the Cardiology Department of 
the Chinese PLA General Hospital. The primary investigated major adverse event pre-
diction (MACE) after acute coronary syndrome (ACS). ACS refers to a group of con-
ditions resulting from decreased blood flow in the coronary arteries, whereby that part 
of the heart muscle is unable to function properly or dies [8]. Regarding the indicators 
of treatment effects for ACS patient samples, we select the MACE after ACS as the 
label for treatment effects. To conduct the case study, we collaborated with the clini-
cians of the cardiology department, and extracted a collection of 3,463 ACS patient 
samples from the hospital EHR system.  



Table 1. Experimental results on ACS experimental dataset 

Method  Accuracy AUC Precision Recall F1 score  

LR 0.744±0.016 0.648±0.026 0.505±0.078 0.198±0.034 0.284±0.044

SVM 0.716±0.010 0.621±0.014 0.402±0.032 0.219±0.026 0.283±0.027

DTEP 0.747±0.010 0.653±0.021 0.524±0.056 0.181±0.025 0.268±0.031

ADTEP 0.746±0.012 0.662±0.020 0.515±0.058 0.210±0.036 0.297±0.042

 

Fig. 1. ROC curves for MACE prediction after ACS 

To demonstrate the effectiveness of our proposed model, we compare the proposed 
ADTEP with the proposed model without adversarial learning, namely the DTEP 
model. For the DTEP, we use AEs to generate the latent representations of both the 
patient characteristics and the subsequent treatments, concatenate the derived latent 
features, and then feed the obtained feature vector into a logistic regression layer, yield-
ing a TEP model. Moreover, we compare the proposed model to state-of-the-art models 
using the experimental datasets, including logistic regression (LR) and the support vec-
tor machine (SVM). 

The performance was evaluated by the Area Under the receiver operating character-
istic (ROC) curve (AUC), accuracy, precision, recall and F1 score. We repeated the 
experiments five times to validate the performance of each model on the experimental 
dataset. As a result, we obtained a group of experimental results for each model, on 
which the mean value and confidence intervals were calculated.  



 

Table 1 presents the TEP performance achieved on the experimental ACS dataset. 
As can be observed from Table 1, the proposed model achieved superior performance 
compared to benchmark models on the experimental dataset. ADTEP performed 
slightly better than DTEP in terms of both the AUC and F1. Although DTEP outper-
formed ADTEP in terms of the average accuracy, the performance gain was marginal. 
These findings indicate that the incorporation of correlational information between pa-
tient characteristics and treatments by means of the adversarial learning strategy was 
useful in predicting the treatment effects of ACS patient samples. Figure 1 illustrates 
the ROC curves for MACE prediction after ACS, also demonstrating that the proposed 
ADTEP achieved comparative performance with benchmark models. In particular, 
ADTEP exhibited 1.4%, 2.2%, and 6.3% performance gains for MACE prediction in 
terms of AUC over DTEP, LR, and SVM, respectively. 

4 Conclusions 

In this work, we have addressed quite a challenging problem in medical informatics, 
namely utilizing a large volume of observational data for TEP. Our proposed model 
was evaluated on a real clinical dataset, and the experimental results demonstrate sig-
nificant improvements in TEP compared to state-of-the-art methods.  
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