CEUR-WS.org/Vol-2424/paper5.pdf

On CTL Model Checking of the MQTT IoT
Protocol using the Sweep-Line Method

Alejandro Rodriguez, Lars Michael Kristensen and Adrian Rutle

Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway
{arte,lmkr,aru}@hvl.no

Abstract. MQTT is a publish-subscribe communication protocol that
is becoming increasingly used for internet-of-things (IoT) applications.
In earlier work we have developed a formal and executable model of the
MQTT protocol using Coloured Petri Nets (CPNs) and performed an
initial verification of behavioural properties. In this paper we investigate
the use of the sweep-line method for verification of the MQTT CPN
model in order to alleviate the effect of the state explosion problem.
We formulate the behavioural properties using Computation Tree Logic
(CTL) and show how to formulate a progress measure for the sweep-line
method based on the main phases of the MQTT protocol. To perform
verification of the CTL properties, we use some property-specific algo-
rithms that represent a first step towards a more generic CTL model
checking algorithms compatible with the sweep-line method.

1 Introduction

The development of distributed software systems is challenging, and one of
the main approaches to tackle the challenges is to build an executable model
of the system prior to implementation and deployment. Coloured Petri Nets
(CPNs) [11] is a formal modelling formalism convenient for specifying complex
concurrent and distributed systems. CPN Tools [9,13] is a software tool that
supports the construction, simulation (execution), state space analysis, and per-
formance analysis of CPN models. One of the key functionalities of CPN Tools
is the ability to perform model checking [1] of the modelled system. This means
that one can generate the state space (set of reachable states) of a system in
order to verify key behavioural properties. Temporal logics [19] such as Compu-
tation Tree Logic (CTL) and Linear Temporal Logic (LTL) are widely used to
express behavioural properties of systems.

MQTT [2] is a publish-subscribe messaging protocol for IoT suited for con-
strained environments such as Machine-to-Machine communication (M2M) and
IoT contexts designed with the aim of being light-weight and easy to implement.
In earlier work [16], we have developed a formal and executable specification of
MQTT [2] motivated by the fact that MQTT is until now only specified us-
ing an (ambiguous) natural language specification. MQTT contains relatively

58 PNSE’19 — Petri Nets and Software Engineering

complex protocol logic for handling connections, subscriptions, and quality of
service levels related to message delivery. Our initial verification was conducted
using ordinary full state space as supported by CPN Tools and our initial ex-
periments clearly highlighted the presence of the state explosion problem [8, 18]
which is caused by the exponential growth in the number of reachable states of
the system.

A large part of the model checking research has aimed at developing tech-
niques for alleviating this inherent complexity problem. We can find several
different families of reduction methods that have emerged during the last years
(such as partial-order reduction methods [7] and hash compaction [17]) which try
to reduce or provide more compact representations of the state space. However,
since the amount of memory is often the limiting factor in model checking, we
focus on the family of methods that combat state explosion by deleting states
from memory during state space exploration. Specifically, we consider the sweep-
line method [10] which is based on the idea of exploiting a notion of progress
exhibited by many systems. We focus on CTL since CPN Tools implements a
CTL-like temporal logic called ASK-CTL [3]. ASK-CTL extends CTL in order
to take into account both state and transition information.

The contribution of this paper is twofold: (1) the implementation of the
sweep-line method using the Standard ML (SML) language together with the
ability of performing model checking of certain behavioural properties specified
using tailored CTL sweep-line model checking algorithms [14]; and (2) the appli-
cation of sweep-line based CTL model checking to our CPN model of the MQTT
IoT protocol.

The rest of this paper is organised as follows. In Sect. 2 we introduce the
sweep-line method and CTL model checking. Section 3 gives a brief review of
the CPN model of the MQTT protocol. We describe the experiments carried
out and the associated results in Sect. 4. Finally, in Sect. 5, we sum up the
conclusions and outline directions for future work. The reader is assumed to be
familiar with the basic concepts of CPNs and CTL model checking techniques.

2 Background

In this section we introduce the sweep-line method and the associated CTL
model checking algorithms, and how we have implemented and integrated them
into CPN Tools.

2.1 The Sweep-line state space exploration method

The sweep-line method [4] is aimed at systems for which it is possible to define
a measure of progress based on the states of the system. The progress measure
is often specific for the system under consideration, but the key property of a
monotonic progress measure is that for any given state s, all states reachable
from s have a progress value which is greater than or equal to the progress value
of s. Defining a progress measure of the system makes it possible to organise

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 59

the state space into layers such that states that share the same progress value
belong to the same layer.

The basic idea of the sweep-line method is to explore the state space in a
least-progress-first order, one layer at a time, such that once all states in a given
layer have been processed, they are removed from memory and the exploration
proceeds to the next layer [10]. In conventional state space exploration, the
states are kept in memory to recognise already visited states. However, states
which have a progress value which is strictly less than the minimal progress
value of those states for which successors have not yet been calculated can never
be reached again. It is therefore safe to delete such states from memory which
significantly reduces the memory usage during the state space exploration.

In this paper, we consider the version of the sweep-line algorithm for mono-
tonic progress measures (¥). A monotonic progress measure preserves the reach-
ability relation, i.e., if a state s’ is reachable from a state s, then ¥(s) C ¥(s’).
The progress exploited by the sweep-line method for a system is formalised by
providing a monotonic progress measure as defined below, where S denotes the
set of states and sg € S denotes the initial state.

Definition 1. (Monotonic Progress Measure) A monotonic progress mea-
sure is a tuple P = (O,C,¥) such that O is a set of progress values, C
is a total order on O, and ¥ : § — O is a progress mapping such that
Vs, s" € reach(sg) : s =* s’ = ¥ (s) C¥(s). O

A progress measure is non-monotonic when there is at least one regress edge,
i.e., edges where the source state has a larger progress value than the desti-
nation state. A generalised version of the sweep-line method that can handle
non-monotonic progress measure and regress edges also exists [12], but is not
the focus of our work.

2.2 CTL Model Checking with the Sweep-line Method

CTL [5] is an important branching temporal logic that is sufficiently expressive
for the formulation of an important set of behavioural system properties. Even
though a large set of properties can be specified using the semantics of CTL, there
are some restrictions when applying them with the sweep-line method algorithm.
The challenge of combining CTL model checking with the sweep-line method is
that conventional algorithms for CTL model checking propagates information
backwards from a state to its predecessors [6]. This follows the opposite work-flow
than the forward progress-first exploration that the sweep-line method performs.

In this work, we consider a subset of CTL covering properties of the following
forms, where @ is a state formulas:

Property - AG® “Invariantly”, meaning that the property holds if ® holds in
all states that are reachable from the current state.

60 PNSE’19 — Petri Nets and Software Engineering

Property - EFO “Holds potentially” or “possibly”, meaning that the property
holds if it is possible to find a state reachable from the current state where
@ holds.

Property - AGEF® “Always possible”, meaning that any state reachable from
the current state, a state satisfying the predicate @ can always be reached.

Property - AGAF® “Always eventually”, meaning that from any state reach-
able from the current state, a state satisfying ® will always eventually be
reached.

We say that a formula (property) f holds in a given model M if f holds in
the initial state sg.

Algorithm 1 specifies the sweep-line algorithm. As mentioned in the introduc-
tion, we have based the implementation on the original sweep-line algorithm for
monotonic progress measures. The algorithm starts with a hash table of visited
states and a priority queue with the states that are still to be processed. Both
are initialized at the beginning with the initial state s (lines 2-3). The progress
measure 1), is also initialized in line 4. Then, the algorithm executes a loop (lines
5-26) which ends when all the reachable states have been processed. For each
iteration, we select one of the states with the lowest progress value among the
unprocessed states (line 6). The condition in line 7 checks if the progress value of
the layer is strictly less than the progress value of the selected state; if so, we are
about to move into the next layer. We now check the behavioural property for
the nodes in the layer, before we move to the next one (procedure checkProperty
at line 8).

To model check the AGEF and AGAF properties, the algorithm exploits the
strongly connected components (SCCs). An SCC of a directed graph is a maximal
subset of nodes that are mutually reachable. Because of the monotonicity of the
progress measure, each SCC only contains nodes belonging to the same layer
and hence each SCC is always contained in a single layer. Therefore, we can
compute the SCCs for a given layer immediately before we delete the nodes in
the current layer and move to the next one. The algorithm checks the property
depending on the form of the property:

Property - AG® We check that every node within the layer satisfies ® If @
does not hold in one of them, we return false and abort the exploration.

Property - EFO® If at least one state satisfies @, then true is returned and the
execution finishes. Thus, false will be returned if at the end of the exploration
not a single state satisfying @ has been found.

Property - AGEF® For this property, the procedure first computes the SCCs
of the given Layer. The property will not be satisfied and therefore the pro-
cedure will finish the execution returning false, if any scc among the set of
SCCs of Layer is terminal and @ does not hold in any of the states contained
in scc.

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol

61

Data:

Nodes > Hash table of visited states currently stored.
Unprocessed > Priority queue of unprocessed states.
Layer > List of states processed in the current layer.

e > Progress value for current layer

@ > Property to be verified.

Result: True if the property is satisfied, false otherwise.

1 begin

2 Nodes.insert(so)

3 Unprocessed.insert(so)

4 Ye = P(s0)

5 while —(Unprocessed.isEmpty()) do

/* node with lowest progress measure

6 s +— Unprocessed.getMinElement()

7 if Y. C 9(s) then

8 checkProperty(Layer, @)

9 forall s € Layer do

10 | Nodes.delete(s")

11 end

12 Layer +— ()

/* Update progress measure for current layer

13 e = P(s)

14 end

15 Layer.insert(s)

/* For every successor state of s

16 forall (t, s') such that s = § do

17 if —(Nodes.contains(s')) then

18 Nodes.insert(s’)

19 if (¢ (s) 23 v¢(s')) then

20 ‘ RaiseException(‘Regress edge found’)
21 else

22 | Unprocessed.insert(s’)

23 end

24 end

25 end

26 end
27 end

*/

*/

*/

Algorithm 1: Sweep-line algorithm for monotonic progress measures

Property - AGAF® For this property, the procedure first computes the SCCs
of the given Layer. For each scc, we first remove the states that satisfy the
property. If the resulting set of nodes has a cycle, then the property is vio-

lated and therefore the execution finishes returning false.

62 PNSE’19 — Petri Nets and Software Engineering

Further details and the demonstrations of the properties AGEF and AGAF
can be found in [14] (the procedure checkProperty is called CHECKSCC in that
paper). After the property is checked, we remove the nodes in Layer, restart it and
update the progress value 9. (lines 9-13). Then the state is added to the current
layer (line 15) and its successor states are computed. Finally, if a successor state
(node) has not yet been visited, it is added to the set of unprocessed nodes
(line 18). If there is a regress edge the algorithm stops and an error message is
returned (line 20).

As the continuation of the work presented in [14], we have implemented
algorithm 1 using the Standard ML language, and integrated it into CPN Tools.
This allows us not only to analyse states spaces of models constructed using
CPN Tools taking advantage of the sweep-line method, but also to verify the
aforementioned behavioural properties.

3 The CPN MQTT Model

Our aim is to use our implementation of the CTL-based sweep-line model check-
ing algorithms from the previous section to verify the key behavioral properties
of the CPN model we have developed of the MQTT protocol [16].

MQTT applies topic-based filtering of messages with a topic being part of
each published message. An MQTT client can subscribe to a topic to receive
messages, publish on a topic, and clients can subscribe to as many topics as they
are interested in. As described in [15], an MQTT client can operate as a pub-
lisher or subscribe, and we use the term client to generally refer to a publisher
or a subscriber. The MQTT broker [15] is the core of any publish/subscribe pro-
tocol and is responsible for keeping track of subscriptions, receiving and filtering
messages, deciding to which clients they will be dispatched, and sending them
to all subscribed clients. On one hand, the broker uses the topics to determine
whether a subscribing client should receive the message or not. On the other
hand, clients can subscribe to several topics depending on their interest.

3.1 Interaction Overview

MQTT defines five main operations: connect, subscribe, publish, unsubscribe,
and disconnect. Such operations, except the connect which must be performed
before the others by the clients, are independent of each other and can be trig-
gered in parallel by either the clients or the broker. We have developed the CPN
model following a modelling pattern that ensures modularity, and therefore en-
capsulation of both the protocol logic and the behaviour of such operations. The
MQTT protocol delivers application messages according to the three Quality of
Service (QoS) levels defined in [2], which are motivated by the different needs
that IoT applications may have in terms of reliable delivery of messages.

In order to show how the clients and the broker interact, we describe the
different actions that clients may carry out by considering an example. Figure 1
shows a sequence diagram for a scenario where two clients connect, perform

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 63

Client 1 Broker Client 2

1- CONNECT
2 - CONNACK

1- CONNECT
2 - CONNACK

3 - SUBSCRIBE(topic(1), QoS(1))
3 - SUBACK (topic(1))

A

4 - PUBLISH (topic(1), QoS(1))

> 5 - PUBLISH (topic(1), QoS(1))
4 - PUBACK topic(1),Q0S(1))

6 - PUBACK topic(1),QoS(1))

7 - UNSUBSCRIBE (topic(1))
7 - UNSBACK(topic(1))

8 - DISCONNECT

\/

8 - DISCONNECT

Fig. 1. Message sequence diagram illustrating the MQTT phases.

subscribe, publish and unsubscribe, and finally disconnect from the broker. The
protocol interaction is as follows:

1.
2.

Client 1 and Client 2 request a connection to the Broker.
The Broker sends back a connection acknowledgement to confirm the estab-
lishment of the connection.

. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms

the subscription with a subscribe acknowledgement message.
Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a
corresponding publish acknowledgement.

. The Broker transmits the publish message to Client 2 which is subscribed to

the topic.

. Client 2 gets the published message, and sends a publish acknowledgement

back as a confirmation to the Broker that it has received the message.
Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

. Client 1 and Client 2 disconnect.

3.2 CPN Model Overview

We now briefly show and discuss the model and its main elements that are
important for the understanding of the work carried out. We refer the reader
to [16] for a detailed description of the MQTT protocol and the MQTT CPN
model. The complete CPN model of the MQTT protocol consists of 24 mod-
ules organised into six hierarchical levels. The model is organized following a
modelling pattern that ensures modularity and therefore, encapsulation of the
protocol logic and behaviour of such operations. This offers advantages both for
readability and understandability of the model and also, for making easier to
detect and fix errors during the incremental verification. For instance, this has

64 PNSE’19 — Petri Nets and Software Engineering

allowed us to make a clear separation of the different QoS logics without having
any negative complexity impact on the model.

Figure 2 shows the top-level module of the CPN MQTT model which consists
of two substitution transitions (drawn as rectangles with double-lined borders)
representing the Clients and the Broker roles of MQTT. Substitution transitions
constitute the basic syntactical structuring mechanism of CPNs and each of the
substitution transitions has an associated module that models the detailed be-
haviour of the clients and the broker, respectively. The name of the (sub)module
associated with a substitution transition is written in the rectangular tag posi-
tioned next to the transition.

Clients

Client

initMsgQueue()

8]
[1” [(client(1),[]),(client(2),[])] @0

ClientxMessages BrokerxMessages

Broker

Broker

Fig. 2. The top-level module of the MQTT CPN model.

The two substitution transitions in Fig. 2 are connected via directed arcs to
the two places CtoB and BtoC. The clients and the broker interact by producing
and consuming tokens on the places. The places CtoB and BtoC are designed
to behave as queues. The queue mechanism offers some advantages that the
MQTT specification implicitly indicates. The purpose of this is to ensure the
ordered message distribution as assumed from the transport service on top of
which MQTT operates.

3.3 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 3. The
place Clients (top-left place in Fig. 4) uses a token for each client to store its
respective state during the communication. The State colour set is an enumer-
ation type containing the values READY (for the initial state), WAIT (when the
client is waiting to be connected), CON (when the client is connected), and DISC
(for when the client has disconnected). The states of the clients are represented

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 65

colset State = with READY | DISC | CON | WAIT;

colset TopicxQoS product Topic * QoS;
colset ListTopicxQoS = list TopicxQoS;

colset ClientState = record topics : ListTopicxQoS *
state : State *
pid : PID;

colset ClientxState = product Client * ClientState;

Fig. 3. Colour set definitions used for modelling client state.

by the ClientxState colour set which is a product of Client and ClientState.
The colour set ClientState used to represent the state of a client which consists
of a list of TopicxQoS, a State, and a PID. Using this, a client stores the topics
it is subscribed to, and the quality of service level of each subscription.

The ClientProcessing submodule in Fig. 4 models all the operations that
a client can carry out. Clients can behave as senders and receivers, and the
five substitution transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and
DISCONNECT has been constructed to capture both behaviours. We have struc-
tured the broker similarly as we have done for clients. This can be seen from
Fig. 5 which shows the BrokerProcessing submodule. The ConnectedClients place
keeps the information of all clients as perceived by the broker. This place is
designed as a central storage, and it is used by the broker to distribute the
messages over the network. The broker behaviour is different from that of the
clients, since it will have to manage all the requests and generate responses for
several clients at the same time.

4 Model Checking and Experimental Results

In this section we show how we have performed sweep-line based model checking
of the CPN MQTT model and present the results from the experiments.

4.1 Progress Measure

The first thing we need to consider is how we define the progress measure of the
model. Since the model runs in an acyclic configuration (there is a final state
where all the clients are disconnected), we have defined the progress measure over
the different states the clients can go through. In the experiments, we consider
two clients, so the initial state is made up with the two clients in the READY state
and the final state is reached when both clients are in a DISC state.

66 PNSE’19 — Petri Nets and Software Engineering

1" (client(1),{topics=[],state=READY,p
id=0})++

oy 1" (client(2),{topics=[],state=READY,p
A

—

ClientxState
KH CONNECT
> 0
a CONNECT
PUBLISH
>)
r PUBLISH
- SUBSCRIBE ~
I~
— [SUBSCRIBE[
A
- >»{| UNSUBSCRIBE ~
UNSUBSCRIBE
KH DISCONNECT ~
DISCONNECT '
@0 [(client(1), (D), (client(2), (D} 9
ClientxMessages BrokerxMessages

Fig. 4. ClientProcessing submodule.

As we have two clients handling four different states, our definition of this
progress measure over the possible combinations will split our state space into
16 layers. Since the progress measure is defined such that the progress values
are integers, we have assigned 1 for READY, 2 for WAIT, 3 for CON and 4 for DISC.
It is important to note that the clients cannot go back to a previous state, for
instance, if client 1 reaches the CON state, it can never be again in the WAIT state.
As we need to keep a global notion of progress measure, we compute it using the
following equation with ¢; and ¢y being client 1 and client 2, respectively:

e = B x* state(cy) + state(cz)

and where B is a base. Essentially, we interpret the states of the two client as
a base B number where B is required to be larger than the number of states of
each client. In our experiments, we have used B = 10, i.e., the decimal numbering
system.

As we have implemented the model in a modular and parameterized fashion,
we are able to control several elements, for instance, the number of clients, the
operations those clients can perform (connect, subscribe, etc.), and the size of the

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 67

Connected 5
DT

ClientsxState
Ao
- Process
4 7 CONNECT \
ProcessCONNECT
- .
>
-~ Process
e > SUBSCRIBE
[ProcessSUBSCRIBE |
-
-~ Process
a > PUBLISH N\
[ProcessPUBLISH
.
[Process
‘ 71| uNsusscriBe [
ProcessUNSUBSCRIBE |
- .
>
-~ Process
4 71| DISCONNECT
ProcessDISCONNECT v
[1[(client(1), [1). (client(2), [D]
cos [D[TT] o
rokeeressages ClientxMessages

Fig. 5. The BrokerProcessing module.

queues for handling messages. Note that, in order to obtain a finite state space,
we have to limit the number of clients and topics, and also bound the packet
identifiers. The packet identifiers are incremented throughout the execution of
the different phases of the protocol (connect, subscribe, data exchange, unsub-
scribe, and disconnect). This means that we cannot use a single global bound
on the packet identifiers as a client could reach this bound, e.g., already during
the publish phase and hence the global bound would prevent (block) a subse-
quent unsubscribe to take place. We therefore introduce a local upper bound
on packet identifiers for each phase. This local bound expresses that the given
phase may use packet identifiers up to this local bound. In the next subsection,
we will highlight the results of first, running the state space using the sweep-line
algorithm, and second, verifying certain behavioural properties.

4.2 Incremental Verification and Properties

We have designed a system to run six incremental executions which gives us more
control to detect errors during the validation of the model and the verification
of the properties. The six different scenarios are wrapped within three different
steps. In the first step we include only the parts related to clients connecting and
disconnecting. In the second step we add subscribe and unsubscribe, and finally
in the third step we add data exchange considering the three quality of service

68 PNSE’19 — Petri Nets and Software Engineering

levels in turn. At each step, we include verification of additional properties.
Below we briefly discuss the three steps and the properties verified at each step.
Note that properties that reason about clients verify each individual client. In
other words, the properties make sure that every client involved verifies them.

Step 1. Connect and Disconnect. In this first step we consider only the part of
the model related to clients connecting and disconnecting to the broker.

S1-P1-ConsistentConnect The clients and the broker have a consistent view
of the connection state.

S1-P2-ClientsCanConnect There exists a reachable state in which each client
is connected to the broker.

S1-P3-ConsistentTermination Each terminal state (dead marking) has a
consistent and desired behaviour.

S1-P4-PossibleTermination The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

Step 2. Subscribe and Unsubscribe. In this step, we add the ability for the clients
to subscribe and unsubscribe (in addition to connect and disconnect from step
1).

S2-P1-CanSubscribe There exists states in which both the clients and the
broker sides consider each client to be subscribed.

S2-P2-ConsistentSubscription In every state there is a consistent subscrip-
tion in both clients and broker sides.

S2-P3-EventualSubscribed If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventualUnsubscribed If the client sends an unsubscribe message,
then eventually both the clients and the broker sides consider the client to
be unsubscribed.

Step 3. Publish and QoS levels. In this step, we add the ability for the clients
to subscribe and unsubscribe in addition to the rest of the properties of Steps 1
and 2.

S3-P1-PublishConnect Each client can publish if it is in a connected state.

S3-P2-CanPublish There exists executions in which each client publishes a
message.

S3-P3-CanReceive For each client there exists executions in which the client
receives a message.

S3-P4-ReceiveSubscribed A client only receives data if it is subscribed to
the topic, i.e., the client side considers the client to be subscribed.

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 69

Table 1 shows the representation of the properties in CTL. Note that the
verified properties need to have one of the forms described in Sect. 2.2. In Table
2 we have marked some properties with “*”. The property S2-P3 has been com-
puted as if it were an EF property (the same applies to S2-P5). However, this
does not completely verify the property since it only checks that it is possible to
find a state where the client is subscribed. What we really want to check is that
we can reach a state where the client sends a subscribe message, and eventually
after that the client is subscribed in the broker side. The implementation of such
properties of the form AG(®) = AF(¥) will be part of our future work.

Table 1. CTL properties verified.

Property| CTL formula Description
S1-P1 AGOD ®: Consistent connection.
S1-P2 EFO® ®: Each client is connected to the broker.

S1-P3 |AG(— DM Vv @) DM: Dead marking | ®@: desired dead marking.

S1-P4 AGEF DM |DM: Dead marking (checked in S1-P3 that it is desired).

S2-P1 EFO ®: Each client can subscribe

S2-P2 AGO @: Each client is consistently subscribed .
S2-P3* EF® Explanation above.

S2-P4 EF® @: Each client can unsubscribe.
S2-P5* EF® Explanation above.

S3-P1 AG (0 =VY) ®: Client connected | ¥: Client can publish.
S3-P2 EFO @: Each client can send a publish.
S3-P3 EFO @: Each client can receive a publish.

S3-P4 AG (d=VY) ®: Client receives a publish | ¥: Client is subscribed.

4.3 Experimental Results

Table 2 summarises the statistics as a result of running the six scenarios, using
both approaches, the traditional CPN state space exploration and the sweep-
line method approach, and verifying the properties aforementioned. The States
and Arcs columns give the number of states and edges, respectively, in the state
space. The Peak column lists the peak number of states stored in memory (i.e.,
the number of states of the largest layer). The Rel. Mem. Reduction column
indicates the reduction of memory as the result of using the sweep-line method,

70 PNSE’19 — Petri Nets and Software Engineering

compared to the total number of states (stored in memory by the tradition
approach). The TV-Time column amounts the time that took for the traditional
procedure to verify the properties. The SLV-Time column details the time needed
to verify the properties using the sweep-line approach. Finally, the column Rel.
Time Increment gives the relative additional time that was necessary for the
sweep-line method to proceed, compared to the traditional approach.

The two approaches provided the same results during the evaluation of the
properties, keeping the consistency of the verification process. Even though the
sweep-line is more time consuming, the memory usage was successfully reduced
even in the worst case. This is also dependent on how we specify the progress
measure. As part of future work, we are investigating how to define a more
optimised version taking advantage of the bounded packet identifiers together
with the already defined progress using the state of the clients.

Table 2. Results on the six incremental executions using both approaches.

Rel. Mem. Rel. Time
Configuration |States| Arcs | Peak TV-Time|SLV-Time
Reduction Increment

1. Conn-Disconn 35 48 9 26.32% | 0.024s | 0.032s 33,33%

2. 1 4+ Subscribe 507 | 1054 | 208 | 41.03% | 0.156 s | 0.218 s | 39.75%
3. 2 + Unsubscribe| 1,849 | 4,120 | 867 | 46.89% | 0.908 s | 1.125s | 23.90%

4.3 + Pub QoS 0 [4,282 8,840 | 1,788 | 41.76% | 3.406s | 4.063s | 19,29%
5.3 + Pub QoS 1 |11,462(23,934| 4,125 | 35.99% |14.795 s | 21.596 s | 45,97%
6.3 + Pub QoS 2 |43,791|85,682(15,932| 36.38% [134.446 s| 298.512 s | 122,03%

5 Conclusions and Future work

We have presented an implementation of the sweep-line method and the ability
to verify on-the-fly four CTL behavioural properties in CPN Tools. We have
performed multiple executions, first using the traditional way that CPN Tools
uses for computing the state space and check the specified behavioural properties,
and second using the implemented algorithm. Our results show that even though
using the sweep-line approach takes more time, it still reduces the amount of
memory usage significantly. Furthermore, checking the properties with the novel
implementation revealed the same results than checking them with CPN Tools.
This provides us an experimental guarantee that both the sweep-line method
theoretical background to check the described subset of CTL properties, and
also the actual implementation we have performed are sound (since verification
of models with CPN Tools has been widely used and reflected in the literature).

Rodriguez et.al.: On CTL Model Checking of the MQTT IoT Protocol 71

We see several directions for future work based on the experiments presented
in this paper. We plan to simulate a more complete set of scenarios where differ-
ent configurations are investigated. For instance, this might include number of
clients, different progress measures, distinct queue sizes or the possibility of re-
transmitting packages. We are working on being able to check a larger set of CTL
properties. An example of it, is the example of the S2-P3-FEventualSubscribed
property, already explained in Sect. 4. Such properties can be explored in a
two-steps fashion way, where first the property in the left-hand side of the impli-
cation is accomplished, and then a second instance of the state space is explored,
checking whether the property in the right-hand side is satisfied or not.

We also see potential improvements in being capable of including non-monoto-
nic progress measures. This would significantly increase the amount of models
that can be analysed, for instance, we could also run the algorithm in the cyclic
version of the CPN MQTT model described in Sect. 3. As explained at the end
of Sect. 4, the way of defining the progress measure for a model will have a
direct impact on its layering, and as part of this we are also investigating how
to improve the progress measure defined in the course of this work.

References

—_

. C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.
. A. Banks and R. Gupta. MQTT Version 3.1.1. OASIS standard, 29, 2014.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

3. A. Cheng, S. Christensen, and K. H. Mortensen. Model checking coloured petri
nets-exploiting strongly connected components. DAIMI report series, 26(519),
1997.

4. S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for state
space exploration. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 450-464. Springer, 2001.

5. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logic of Programs, pages
52-T71. Springer, 1981.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 8(2):244-263, 1986.

7. E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using
partial order techniques. International Journal on Software Tools for Technology
Transfer, 2(3):279-287, 1999.

8. E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani. Model checking and the
state explosion problem. In Tools for Practical Software Verification, pages 1-30.
Springer, 2012.

9. CPN tools. http://cpntools.org/.

10. K. Jensen, L. M. Kristensen, and T. Mailund. The sweep-line state space explo-
ration method. Theoretical Computer Science, 429:169-179, 2012.

11. K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for

modelling and validation of concurrent systems. International Journal on Software

Tools for Technology Transfer, 9(3):213-254, Jun 2007.

[\]

72

12

13.

14.

15.

16.

17.

18.

19.

PNSE’19 — Petri Nets and Software Engineering

. L. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety Prop-
erties. In Proc. of Formal Methods 2002, volume 2391 of Lecture Notes in Computer
Science, pages 549-567, 2002.

L. M. Kristensen and S. Christensen. Implementing coloured petri nets using
a functional programming language. Higher-order and symbolic computation,
17(3):207-243, 2004.

A. Lilleskare, L. M. Kristensen, and S.-O. Hgyland. Ctl model checking with
the sweep-line state space exploration method. Proc. of Norwegian Informatics
Conference (NIK), 2017.

MQTT essentials part 3: Client, broker and connection establishment.
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe.
A. Rodriguez, L. M. Kristensen, and A. Rutle. On modelling and validation of
the mqtt iot protocol for m2m communication. 39th International Conference on
Application and Theory of Petri Nets and Concurrency, 2138:99-120, 2018.

U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.
In Advanced Research Working Conference on Correct Hardware Design and Ver-
ification Methods, pages 206—224. Springer, 1995.

A. Valmari. The state explosion problem. In Advanced Course on Petri Nets, pages
429-528. Springer, 1996.

J. Van Leeuwen and J. Leeuwen. Handbook of theoretical computer science, vol-
ume 1. Elsevier, 1990.

