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Abstract. Construction site planning is based on both explicit knowledge, as retrieved from 
regulations, and implicit knowledge, arising from experience. To retrieve and formalize rules from 
implicit knowledge, past construction projects can be analyzed. In this paper, we present an image 
analysis pipeline to retrieve information on past construction sites from airborne images. We fuse 
machine learning based image analysis with georeferencing and openly available geospatial data to 
retrieve a detailed description with true dimensions of the construction site at hand.  

1. Introduction 

The digitization of the AEC (Architecture, engineering, construction) industry offers various 
new possibilities for designing, planning, and monitoring buildings. In recent years, many 
research projects focused on using methods of computer-aided engineering, such as building 
information modelling or structural simulations, to facilitate and enhance the planning process. 
However, as of now, not many of the advantages of using digital support are carried on after 
structural designing is concluded. Specifically, construction site layout planning (CSLP) is still 
mostly realized based on planner’s experience and rules of thumb, if at all. Using scientifically 
proven digital support tools offers significant potential for improvement regarding planning 
accuracy and time efficiency.  

A large set of information, traditionally acquired in late planning stages, must be considered 
during site equipment (SE) planning. To reduce planning efforts and prevent repetitive re-
planning phases due to changes in construction design or construction methods, SE planning is 
usually conducted only after decisions on design and construction have been finalized (without 
in-depth information on required equipment). To address this issue and enable efficient CSLP, 
several semi-automatic solutions have been proposed in previous research. Key point to 
formulating these planning algorithms is extensive domain knowledge, both explicit and 
implicit. Explicit knowledge can be retrieved from regulations, guidelines, and local boundary 
conditions. However, in practice, numerous SE variants might be applicable for each 
construction project. To support the decision, implicit knowledge is vital. Implicit knowledge 
arises from expert knowledge and practical experience and is hard to extract and formulate in a 
strict, logical, and computable manner. Executing companies dread competitive disadvantages, 
and often hesitate when asked to give out delicate information on design decision on past 
construction sites. Therefore, we propose gathering information by analyzing large numbers of 
aerial photographs containing construction sites. 

In this paper, we present an image analysis pipeline for retrieving information on past 
construction sites. We fuse information retrieved from convolutional neural networks for image 
analysis on airborne images with georeferencing and external data sources to retrieve a detailed 
description of the construction site at hand. The applicability of our approach is presented in a 
case study. 
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2. Related work 

Image analysis, as part of computer vision, is a heavily researched topic, that got even more 
attention through recent advances in autonomous driving and machine learning related topics. 
For effective and efficient image analysis and object recognition, machine learning algorithms 
have been increasingly used during the last decades. In 2012, the convolutional neural network 
(CNN) “AlexNet” (Krizhevsky, Sutskever, and Hinton, 2012) achieved a top-5 error of 15.3% 
in the prestigious ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 
2015). These results were surprisingly accurate at the time, proving the advantages of using 
CNN. On this account, the software industry shifted towards using CNN for all machine 
learning based image processing tasks (LeCun, Bengio, and Hinton, 2015). 

Image analysis on construction sites, on the other hand, is a rather new topic. Since one of the 
key aspects of machine learning is the collection of large datasets, current approaches focus on 
data gathering. Tajeen and Zhu (2014) present an image dataset containing numerous annotated 
images of construction equipment, however centering on excavation phase (excavator, loader, 
dozer, roller and backhoe) and images taken from ground. Kropp, Koch, and König (2018) 
detect indoor construction elements based on similarities, focusing on radiators. In the scope of 
automated construction progress monitoring, Han et al. published an approach for Amazon 
Turk based labelling (Han and Golparvar-Fard, 2017). Bügler et al. (2017) combined 
photogrammetric methods and video analysis to assess the progress of earthworks. To this end, 
they created point clouds to measure the volume of excavated soil and detected truck dumpers 
on images using foreground detection. Jahr, Braun, and Borrmann (2018) use an artificial 
intelligence approach to detecting formwork elements on UAV imagery of construction sites. 

3. Methodology 

To generalize implicit knowledge from airborne images, we propose an image analysis pipeline 
utilizing machine learning algorithms, georeferencing, as well as data retrieval (see Figure 1). 
In a first step, we detect construction sites by using an object detection algorithm on the airborne 
images. If at least one construction site is detected, an instance segmentation algorithm is used 
to detect individual elements of the construction. In this paper, we concentrate on detecting 
tower cranes, as they highly affect construction progress. To enable georeferencing, surveying 
information on the images is required. To be able to estimate element dimensions, the images 
are orthorectified. Additional information relevant to the construction site, such as building 
dimensions, property lines, or neighboring constructions, can be retrieved by georeferencing 
the image and linking it to spatial information retrieved from the cadastral map or other 
geoinformation services, such as OpenStreetMap or city models. Finally, all information 
retrieved is stored in a database for reliable data management and access. 
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Figure 1: Image analysis pipeline: In a first step, airborne images are scanned for construction sites. 
If any were found, individual construction elements are detected. To retrieve correct dimensions, the 

images are orthorectified and georeferenced. Additional data sources are used to add context.  

3.1 Image analysis on airborne images 
To evaluate the photographs, we use two different CNNs: the first network detects construction 
sites on airborne images, the second network segments the resulting cropped images. 

Image analysis using convolutional neural networks. There are different tasks to be solved 
by image processing algorithms. Well known tasks include classification, where classes of 
single-object images are recognized; object detection, where several objects in one image may 
be classified and localized within the image; and image segmentation, where individual pixels 
are classified (Rusk, 2015). In this paper, we focus on object detection and instance 
segmentation using CNNs. 

CNNs are structured in locally interconnected layers with shared weights (see Figure 2). Each 
layer comprises multiple calculation units, or neurons. The neurons of the first layer (input 
layer) represent the pixels of the analyzed image, the last layer (output layer) comprises the 
predictable object classes. Between input and output layer, any number of hidden layers can be 
arranged. To adapt to different problem domains, such as recognizing construction site 
elements, CNNs are trained. During training, the connections between certain neurons are 
increased, while the connections between other neurons are reduced—the weights connecting 
consecutive layers are weighted. The training is usually carried out using supervised 
backpropagation, meaning the network is fed with exemplary input-output pairs (Rusk, 2015). 
The expected output, viz. correct solution, for each input is called ground truth. To train a CNN 
towards reliable predictions, a significant amount of training data is required, which has to be 
prepared in a preprocessing step. To accelerate the training processes, weights of previously 
trained CNNs can be used. To adapt pretrained CNNs, usually the last layers are replaced with 
layers representing the new problem domain before training with new data.  
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Detecting construction sites using convolutional neural networks. To collect information 
on construction sites, first, they have to be localized. The task to classify and localize objects 
on images containing several objects of different types is called object detection (Rusk, 2015). 
To solve this task, algorithms usually predict rectangular areas (bounding boxes) with high 
probabilities of object occurrences, as well as the corresponding object class. To measure the 
performance of an algorithm, the intersection of union between prediction and correct solution 
is examined. Acknowledged measures include precision (How many of the predictions are 
correct?), recall (How many relevant items are predicted?) and mAP (mean average precision, 
calculated from recall and precision). 
In this paper, we used an “you only look once” network (YOLOv3, see Figure 2) in Darknet 
framework (Redmon & Farhadi, 2018). YOLOv3 is a single shot detector, which enables 
reasonable prediction rates with very fast training and prediction times compared to other 
leading algorithms. YOLOv3 divides the input image in a grid, where each cell predicts only 
one object. Predictions of objects of varying sizes are enabled by a feature pyramid network—
YOLOv3 makes predictions at three different scales for each location. To predict the bounding 
box of the detected object, YOLOv3 uses anchor boxes with dimensions tailored to the specific 
problem domain.  

Segmenting construction elements using convolutional neural networks. As exact 
information on the whereabouts and dimensions of the site equipment is desired, each 
equipment has to be detected as precisely as possible. We want to know the exact shape of the 
object rather than its bounding box. Therefore, we need an instance segmentation algorithm that 
labels images pixelwise and is able to distinguish not only between several classes, but between 
several objects of the same class. 

A very capable algorithm for instance segmentation is Mask R-CNN (He, Gkioxari, Dollár, and 
Girshick, 2017). Mask R-CNN predicts instance masks for detected objects in two stages: 
firstly, it uses a RoI (region of interest) Align network to locate bounding boxes and classes for 
possible objects. Secondly, a semantic segmentation model is used to determine the exact object 
outlines within the bounding box. Since only one object should be contained in each bounding 
box, a binary classifier mapping the pixels 1/0 is sufficient—1 representing the presence, 0 the 
absence of an object. 

Figure 2: Layered structure of YOLOv3 (slightly modified from https://towardsdatascience.com/yolo-
v3-object-detection-53fb7d3bfe6b) 
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3.2 Orthorectification of images 

Aerial images are not only source of information about the captured scene regarding the content 
but can also deliver information about localization of the objects and metric information. To be 
able to measure and localize objects in aerial images, the following information is needed: 

• Exterior orientation parameters for each image (position and orientation of the camera 
during acquisition) 

• Interior orientation parameters of the camera (obtained in the calibration process) 
• Meshed digital Surface Model (DSM) generated from the images itself, if stereo pairs are 

provided, or DSM from another source. 

Georeferencing. Determining the exterior orientation of the camera in the world coordinate 
system is called georeferencing. This can be done either by using ground control points (GCPs), 
or by using the GNSS (global navigation satellite system) position together with inertial 
measurement unit (IMU) and system calibration for camera orientation (direct georeferencing). 
Direct georeferencing has the advantage that the manual effort of measuring the GCPs is 
avoided. The accuracy of the direct georeferencing depends on the quality of the GNSS signal 
and can vary from few decimeters to few meters (Pfeifer, Glira, and Briese, 2012). 

Ground Sample Distance. To estimate true dimensions in aerial photographs, the distance 
between two pixels on ground (Ground Sample Distance, GSD) must be known. In traditional 
aerial photogrammetry, images are acquired using nadir view. Assuming a locally flat Earth 
surface and knowing flight altitude, sensor size and camera constant (focal length), the GSD 
can be calculated. The altitude is determined relatively to the reference surface and not the 
terrain (Figure 3). Therefore, changes in the terrain height and presence of other objects (e.g. 
high buildings) lead to varying GSD. Furthermore, the flight altitude does not remain constant 
over the whole flight campaign, as well as vertical acquisition geometry not always can be 
ensured. Accordingly, only approximate GDS can be indicated. Modern aerial photogrammetric 
camera systems use a combination of nadir and oblique view cameras, delivering additional 
views on building facades and other 3D objects. GSD in oblique images, however, cannot be 
determined.  

Orthophoto. During orthorectification, aerial images in central projection are transformed into 
orthogonal projection in order to unify the GSD and allow direct measurements in the images 
(Figure 4). For each cell of the DSM mesh, the corresponding part of the image is identified 
and transformed onto the DSM. The resulting mesh is then ortho-projected on a regular grid 
created on the reference surface with defined GSD. We orthorectify not only the color image, 
but also obtained labels. 

  
Figure 3: Flight altitude, terrain height and 

reference surface 
Figure 4: Orthorectification of a central 

projection 
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3.3 Additional sources and data enrichment 
Surrounding amenities and conditions of construction sites pose big influences on the site 
equipment. For example, neighboring buildings might influence tower crane positions and 
minimum dimensions to ensure safe operation without interference; access roads are highly 
relevant for material supply and will influence construction roads and storage area positioning. 
If the location of a construction site has been determined through georeferencing the image, the 
information on that construction site can be enriched using spatial information on the 
surrounding amenities. Spatial information is available from different sources, e.g. cadastral 
maps. Cadastral maps show property lines and ownerships and may include additional 
information such as parcel numbers and existing structures.  
A wide selection of digital geodata is available on OpenStreetMap1 (OSM). OSM aims to 
collect and provide data under an open license. The geodata provided includes, inter alia, roads, 
parks, building outlines, and amenities such as fire hydrants and post boxes. While the data can 
be viewed as map representation, several APIs are available for data access, of which Overpass 
API is currently well maintained. Overpass works with queries either in xml or in its native 
language, Overpass QL. In this paper, we used the Overpass API with Overpass QL to retrieve 
information on neighboring buildings and roads.  
Additional 3-dimensional information could be retrieved from city models. Depending on the 
model's Level of Detail (LoD), buildings are represented as 3D blocks (base area and height) 
or with increasing detailing, such as roof shape, window areas and even interior construction. 
City models are widely available. For storing and exchanging city models, the open standard 
CityGML, among other data models, might be used. 

4. Case study 
The presented image analysis steps were implemented individually to prove the proposed 
approach. The results are presented in the following sections. 

4.1 Generating ground truth data for image analysis 

To create ground truth data for both CNNs, we used airborne images provided by the German 
Aerospace Center (DLR) (Kurz et al., 2012). The aerial photographs were not commissioned 
for this paper, but rather repurposed from other applications, therefore not leading to additional 
data recording efforts. The images were gathered in Germany, both by airplane and helicopter. 
In total, approximately 4.500 high resolution images with varying image sizes have been 
sighted and labeled. In a first step, we extracted manually all images that contain construction 
sites within the construction phase (characterized by the use of tower cranes; visible material 
storage; first construction elements have been erected. See Figure 5). Subsequently, to generate 
the object detection dataset, we added bounding boxes for all construction sites using the 
labeling platform “Labelbox”2. We translated the labels from Labelbox format to YOLO format 
and split the data in training, testing and validation data set (Table 1). 
Table 1: Number of images used for training, testing and validation, and number of construction sites 

Images total  Number of construction sites Training (70%) Testing (20%) Validation (10% 

4443 1727 1209 345 173 

                                                 
1 https://www.openstreetmap.org 
2 https://labelbox.com/ 
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To prepare the segmentation dataset, we used images of tower cranes taken by UAVs, and 
images taken by hand cameras (mostly from below) (Figure 6). Additionally, we further 
processed images from the object detection dataset. We added a margin around the construction 
site bounding boxes to ensure that all relevant information is contained (especially tower cranes 
reaching outside construction field) and cropped along the labels. Corresponding image areas 
for neighboring construction sites with overlapping bounding boxes are contained in both crops. 
We again used Labelbox to add polygonal labels for all tower cranes. For training the Mask R-
CNN network, we decided to use the COCO data format. In this case, too, we split the data in 
70% training data, 20% testing data and 10% validation data. 

       
Figure 5: Samples for cropped images containing construction 

sites 
 Figure 6: Samples for hand held camera 

and UAV images of tower cranes 

4.2 Training CNNs for object detection and instance segmentation 

Object detection with YOLOv3. For training the construction detection network, we use a 
YOLOv3 architecture in Darknet (Redmon and Farhadi, 2018). To better adapt the network to 
the construction site dataset, we regenerated the anchor sizes. To that end, we used k-means 
clustering on the aggregate of bounding boxes in the construction site dataset. The resulting 9 
clusters for bounding box width and length, normalized on the respective image size (see Figure 
7), are used as length and width of the anchors.  

To reduce training time and retrieve better results with our limited data set, we use the pretrained 
weights of the Darknet53 network. Training for 1000 epochs took approximately 10h on an 
Nvidia DGX-1. Examples for resulting bounding boxes are depicted in Figure 8. While 
bounding boxes for smaller construction sites are very well predicted, the CNN is not yet 
sufficiently adapted for larger construction sites. When sighting the dataset, it gets apparent, 
that smaller construction sites are predominant in residential areas and make up for a majority 
of the dataset. To a broader variety of construction sites, the training dataset is currently 
expanded further. Another step to improve the object detection algorithm entails more extensive 
preprocessing of the data. 

   

   
Figure 7: Original YOLOv3 anchor boxes (left) 

and construction site anchor boxes (right) 
Figure 8: Examples for resulting bounding boxes from 

validation set 
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Tower crane segmentation with Mask R-CNN. For image segmentation, we used Mask R-
CNN in Keras with TensorFlow backend (He et al., 2017). We used pretrained weights from 
the COCO Dataset (Lin et al., 2014). Mask R-CNN adjusted very fast to the tower crane dataset, 
leading to low loss after few epochs (Figure 9). Examples for resulting instance bounding boxes 
and masks are depicted in Figure 10. Object bounding boxes are predicted reliably, while, in 
some cases, masks tend to disconnections. To improve the predictions, the training data set is 
increased continuously.  

   

Figure 9: Loss for training Mask R-CNN on tower 
crane dataset 

Figure 10: Examples for resulting masks (in 
red) from validation set.  

4.3 Georeferenced information 

In Figure 11, we present results for orthorectification. First, the DSM was generated (left) and 
then the orthophoto was calculated (right). Here, the seamline dividing the areas covered by 
color information from two images cuts a tower crane into two parts, which makes it difficult 
to detect tower cranes directly in the orthophoto. Therefore, cranes were labeled in original 
aerial images (Figure 12, left) and the labels were orthoprojected on the DSM (Figure 12, right). 
As we see in Figure 11, crane 1 is not present in the DSM at all, and from crane 2 only the tower 
of the crane is mapped in the DSM. This is because the crane structure is not easy to reconstruct 
from images. As a very thin structure, cranes do not provide many points in the point cloud. 
Points that are detected are on much higher level than the surrounding, therefore many 
algorithms detect those points as outliers and remove them from DSM. In addition, cranes may 
move during data acquisition, which leads to further difficulties in the reconstruction. The 
remedy for this situation is using true orthophotos based on high-density and high-accuracy 
point clouds, which contain entire tower cranes. True orthophotos, however, require high 
overlaps between the images (80% in flight direction and 60% between the image stripes). Here 
not only the difficult geometry of the crane must be considered, but also its dynamic behavior. 
This aspect should be a subject of our future investigations. Currently, we select for 
orthorectification labels which are located close to the image center and orthorectify labels 
object-wise, which means that we prevent seamlines splitting the labels.  
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Figure 11: Difficulties with orthorectification of cranes: DSM (left); orthophoto sections with 

cranes (right) 
 

     
Figure 12: Orthorectification and georeferencing of labels: aerial image with labeled tower crane 

(left); orthorectified and georeferenced labels stored as GeoTIFF (right) 

4.4 Data enrichment using Overpass API 
To retrieve surrounding amenities to the construction site in question from OSM, we used 
Overpass API. Using the GPS coordinates of the construction’s outer corners, we queried 
adjacent roads and footways as well as neighboring buildings. Overpass API returns the queried 
data text based (i.e. as json or xml). For monitoring the results, we used Overpass turbo3 (Figure 
13). Overpass turbo is a web-based tool able to run Overpass API queries. The results are shown 
as interactive map, where further information on the queried nodes can be retrieved. The 
additional data collected from OSM is added to the information retrieved from the images. 

            
Figure 13: Neighboring elements (footways, highways, buildings) of the construction site as 

retrieved by Overpass API.  Left: XML scheme, right: Visualization using Overpass turbo, queried 
elements are marked with blue outlines. 

                                                 
3 https://overpass-turbo.eu/ 
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5. Summary 
In this contribution, we presented an image analysis pipeline capable of detecting construction 
sites as well as construction elements on airborne images. To gain further information on the 
situation on site, we retrieve real dimensions of the construction field and tower cranes by 
orthorectifying the images. Further data sources can be used to enrich the information. Using 
the overpass API, we retrieve information on the site’s surroundings from OpenStreetMap. In 
the end, we gained a knowledge database for construction sites in Germany, which will be 
dynamically extended. Next steps include the extension with further construction site elements 
such as containers or vehicles, connection to city models to retrieve 3D information and the 
advancement of available algorithms using the knowledge database for solving the CSLP. 
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