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Despite the increasing adoption of BIM technologies, construction drawings are still excessively 

used in the industry. Many leading AEC figures predict the coexistence of 3D models and 2D 

drawings for at least a decade. Very often, these two are managed – and in particular for the more 

advanced design stages – developed separately from each other which puts their consistency at 

severe risk. In current practice, the deviation detection between drawings and 3D models is a manual, 

cumbersome, and erroneous process. To overcome this issue, the need for automation emerges. In 

this paper, we explore this problem and propose a robust drawing-to-model registration system 

which provides a basis for subsequent consistency verification. It translates the 2D-3D matching 

problem into the 2D-2D one by cutting a 3D model into sections and measuring similarity between 

them and the construction drawing. At the core of the proposed approach is geometric hashing, 

which we extend to further automate the registration process. We propose to build two geometric 

hash tables which are being matched against each other while measuring similarity. In order to 

reduce the matching ambiguity – which is the drawback of the proposed extension – we estimate the 

minimal number of bases to be randomly sampled in the presence of outliers by using the random 

sample consensus. Moreover, we decrease the burden of building hash tables by reducing the bases 

– in which features are described – to line segments. We demonstrate the applicability of the 

proposed system in a case study and provide experimental results. 

1. Introduction 

The construction industry is currently in a transition period in which drawing-based practices 

are slowly being replaced by model-based ones, which implies the coexistence of construction 

drawings and digital 3D models. According to many leading figures in the AEC industry, the 

intense use of technical drawings in the design and construction of buildings will continue for 

at least a decade despite the increasing adoption of BIM technologies. In particular, drawings 

will prevail for a number of years as the legally binding documents for the actual construction 

processes on site, but also for approval processes by permission authorities. This is also 

reflected by the recently published international standard ISO 19650 that defines the concept 

of information containers composed of models and the associated drawings (ISO, 2018). Most 

of the exchange information requirements (EIR) documents and the associated contracts 

demand the consistence of the models and the drawings handed over at a certain point in time 

(data drop) (ISO/DIS, n.d.). In many cases, checking the consistency is part of the approval 

processes for passing one of the quality gates (Preidel et al., 2017). However currently, these 

checks must be done manually as no automated methods exist. 

Commercial BIM design applications allow to derive drawings that are fully consistent with the 

created BIM model. However, due to the established processes of the industry, construction 

drawings and BIM models are subsequently managed separately from each other. Even worse, 

in many cases they are developed further and refined independently from one another. 

Therefore, the need for automated verification of consistency between BIM models and the 

corresponding construction drawings persists. This paper does not question the well-

documented value of model-based design and construction (Sacks et al., 2019). However, it 

respects the reality of the coexistence of models and drawings for many years to come. More 
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specifically, it connects to today’s established working practices where drawings form the 

major basis of information exchange, even if BIM models are created by individual 

stakeholders. In this paper, we introduce a robust method for the registration of construction 

drawings to BIM models, which provides the basis for consistency verification and deviation 

detection. 

In a broader sense, shape registration is a task of aligning two shapes in a shared coordinate 

system (Shao et al., 2011). More specifically, the positioning of a 3D model against an image 

is known as the model-to-image registration (Jung et al., 2016), co-registration (Avbelj et al., 

2015), or 3D-to-2D registration (Wunsch and Hirzinger, 1996). Generally, most registration 

problems can be divided into three steps: (1) Feature extraction – where distinctive features are 

derived from two objects to be matched; (2) Matching – which measures the degree of similarity 

between the two sets of extracted features and (if necessary) establishes the explicit 

correspondences between them; (3) Transformation – which transforms the matched features 

so that they align in a shared coordinate system; The researches related to the matching step 

focus mainly on either feature-based shape matching or matching topology. 

We propose a registration system, tailored specifically to the drawing-to-model matching 

problem in the construction industry, which focuses on feature-based shape matching. The idea 

of this approach is similar to the one used in view-based 3D model retrieval domain (Tangelder 

and Veltkamp, 2008; Liu, 2012), in which two 3D models are defined to be similar if they look 

similar from different views based on the shape of the object in these views. Accordingly, the 

2D-3D matching problem is translated into the 2D-2D one. 

The ultimate objective of our method is that a given drawing (subsequently called a query 

drawing) is supposed to be placed (translated, rotated, scaled) in the three dimensional space of 

a BIM model such that the cross-section derived at the corresponding plane (subsequently 

called a model section) is the most similar to the query drawing. Before this, however, we derive 

model sections and measure their level of similarity to the query drawing by comparing the 

extracted features. For the most similar model section, we establish explicit correspondences to 

the query drawing and align the drawing to the model section. 

At the core of the proposed matching algorithm is geometric hashing. We decrease the burden 

of building hash tables by reducing the space of bases to line segments. Furthermore, we 

propose to extend the original geometric hashing algorithm in such a way that the matching 

process is fully automated. To this end, we propose to build two geometric hash tables which 

are being matched against each other while measuring similarity between a model section and 

the query drawing. In order to reduce the matching ambiguity – which is the drawback of the 

proposed extension – we propose to estimate the minimal number of bases to be randomly 

sampled in the presence of outliers by using the random sample consensus - RANSAC (Fischler 

and Bolles, 1981). 

The paper has the following structure. Section 2 describes our model-to-drawing registration 

system, including feature extraction, similarity measure and matching methods, correspondence 

establishment, and alignment. Section 3 contains a case study for a standard 3-story residential 

building along with results. We conclude this paper with Section 4 devoted to discussion.  

2. Drawing-to-model registration system – methodology 

The drawing-to-model registration system focuses on feature-based shape matching and uses 

knowledge-based extended geometric hashing as the method for measuring similarity and 

correspondence establishment between a query drawing and a set of cross-sections (in this 
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paper, we name them model-sections) derived from a 3D BIM model. The overview of these 

steps is shown in Figure 1. We will walk through them in detail in the next sections. 

 

Figure 1: High-level pipeline for the drawing-to-model registration system. 

2.1 Generation of model sections 

We translate the 2D-to-3D matching problem into 2D-to-2D by cutting the 3D model. In this 

paper, we use horizontal planes in such a way, that each of them is located above each building 

level so that it reflects the engineering practice of deriving floor plans at 1.20 m. above a 

building level. Accordingly, we reduce the number of potential model sections (the 

discretization of solution space) to be compared with the query drawing significantly. In case 

of the drawings showing the vertical cross-section of a building, we propose to cut the 3D model 

vertically and at uniformly distributed distances. 

 

(a) (b)     (c) 

Figure 2: In our system, the 2D-to-3D matching problem is translated into 2D-to-2D by cutting a BIM 

model (a) using planes as shown in (b). As a result, the solution space is reduced to separate 2D model 

sections (c). 

In case of the drawings of facades, we propose to create orthographic projections of all the sides 

of the BIM model. Moreover, since BIM models are comprised both of geometry and semantics, 

we are able to select the types of building elements that we use for matching. For example, 

elements as doors and windows are shown in construction drawings as icons conforming to 

engineering standards and not as their pure orthographic projections, and as such, they are not 

good candidates for the shape-based assessment of similarity by our system. 

As shown in Figure 3, the shapes of a floor plan and a model section derived from the same 

level appear rather similar to a human, however they inevitably differ from each other in details. 

The purpose of the left one is to convey engineering design and therefore, they are richer in 

explicit and additional descriptions (hatch patterns, fills, dimensional lines, descriptions) than 
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BIM models, mainly due to conforming to engineering standards. For example, the building 

elements such as thermal insulation, concrete columns or walls cut by a plane are filled in with 

hatch patterns, explicit dimensional lines are drawn, the symbols of certain types of building 

elements such as doors or windows are agreed icons and differ from their orthographic 

projections. In addition, what might not be seen instantly from Figure 3 is the fact that the 

orientation and the scale of the presented drawing and model section are already correct. In a 

real scenario, the descriptor responsible for measuring similarity must be invariant to rotation, 

translation and scaling if this process is supposed to be automated and the correspondence 

properly established. Moreover, construction drawings very often contain additional details not 

present in BIM models due to the fact that the modeling of all details in 3D is not yet sufficiently 

efficient. 

  

Figure 3: Visual comparison of a construction drawing and its pure section derived from an IFC model 

at the same level. 

Having this in mind, the proposed concept is to measure the commonality of construction 

drawings and the model sections. The more they have in common, the more similar they are. 

We extract a unique fingerprint (a unique set of features) occurring in each model section and 

we find this unique set in the query drawing. In other words, we find the common part of the 

two sets of features – one set belonging to a model section and the other belonging to the query 

drawing. We repeat this process for each model section, and the section with the greatest 

common part is then proposed as the best match. It is then used for the subsequent explicit 

establishment of correspondence and the alignment. 

2.2 Feature extraction 

Since the model sections and the floor plan are in vector-based representations, we query them 

in such a way that we extract their features and segment lines. We do not use methods for 

detection of key-points or lines from raster images (e.g. Hough line transform). 

In building engineering, corner points are the dominant type of features since construction 

drawings are mainly comprised of straight segments. Accordingly, for each derived 2D model 

section we extract key-point features as corner points, here understood as the start, end, and 

intermediate points defining polylines, and as the start and end points of single segment lines 

whose overlapping points (duplications) are later filtered out. Due to the fact that we propose 

to build hash tables using segment-wise bases, and not all the possible combinations of bases 

of key-point features, we extract a set of line segments described by their start and end points. 

In a similar vein, we extract the same key-point features and segment lines from the query 

drawing. In the core of the proposed methodology is the measure of the common part between 

the model sections and the query drawing. Since the model sections, by definition, contain only 

elements cut by a plane, and not projected onto the plane, it makes sense to look for these 

elements in the query drawing. In the engineering convention, such lines cut by a plane are the 
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thickest, and therefore, we first query the thickest lines in the query drawing, and based on 

them, we extract the key-point features and line segments. The line segments are ordered sets 

of points and for each line segment, two bases are later taken into consideration (start-end-point 

basis and end-start-point basis), which is necessary for unambiguous alignment in a further step 

of the proposed solution. 

2.3 Similarity measurement using geometric hashing 

In order to find the common part of two sets of features, the descriptor must be able to partially 

match objects. By partial matching we mean finding a shape whose part is similar to a part of 

another shape, which in this case, translates to finding the matching features between two sets. 

Moreover, it must be tailored for specific purpose of matching many model sections to a query 

drawing within reasonable time. Accordingly, we do not need descriptors setting up the explicit 

correspondence for each model section and the query drawing, for example such as presented 

in (Belongie et al., 2002). Additionally, translation, scaling, and rotation invariances are 

required simply due to the fact that models and drawings are described in arbitrary coordinate 

systems. Therefore, in the proposed approach, there is a need to provide the descriptor which 

supports partial matching and provides fast scores for the common part. 

We have decided to match shapes between the corresponding building elements in 2D and 3D, 

and not – for example – to match the grid systems of drawings and 3D models. From our 

experience, grid systems are very rarely exported to IFC models, and therefore, matching based 

on the grids would impose a severe prerequisite. Instead, we provide a general solution to the 

existing problem which works without major prerequisites and thus, without barriers in its 

application.  

As such, we propose and extend geometric hashing which was originally developed as an object 

recognition technique in computer vision (Wolfson and Rigoutsos, 1997). The general 

procedure and ideas behind it can be found in the original paper and we skip this part due to the 

page limit. Geometric hashing consists of two stages – preprocessing and recognition. 

Preprocessing phase 

In our case, the preprocessing stage turns the features described in segment-wise bases extracted 

from a query drawing into a hash table. The naïve solution would be to describe the features (𝑛 

stands for the number of the features) in all their combinations (𝐶𝑛,𝑘 – combinations without 

repetition, with 𝑘 = 2, because a basis consists of an ordered pair of points), which yields the 

quadratic function as shown in equation 1. The equation shows asymptotic number of naïve 

bases using all combinations of key-point features needed to build a geometric hash table: 

𝐶𝑛,𝑘 = (
𝑛

𝑘
) =

𝑛!

𝑘! (𝑛 − 𝑘)!
=
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2) (1) 

We reduce the basis space, however, to segment-wise bases (𝐵𝑚), meaning that each straight 

segment becomes a basis. This reduces the number of bases in which a hash table is built to a 

linear function (see equation 2), as each segment line increases the number of bases by 1 (or in 

case of query drawings, each segment line increases the number of bases by 2): 

𝐵𝑚 = 1𝑚 = 𝑂(𝑚) (2) 

Recognition phase 

Since the hash table of the query drawing is built with the features described in all segment-

wise bases, in order to compare the similarity to a model section, we need to sample one 
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corresponding basis in the model section, and count the number of matching features by 

accessing entries of the hash table built on the query drawing. In other words, the task comes 

down mainly to finding a corresponding segment line between the model section and the query 

drawing. The model section whose basis has the most corresponding features (and thus the 

greatest common part) is therefore the most similar to the query drawing. In the ideal situation, 

this task would be trivial if the query drawing and the model section did not have any outliers 

or noise. We could randomly sample a basis, describe all the features in this basis, and the 

model section with the highest number of corresponding features would be the most similar to 

the query drawing. Our model sections, however, do contain outliers because, for example, they 

are composed of the cross-sections of individual building elements (see an example in Figure 4 

which shows a part of a model section comprised of two walls marked in green and blue). 

Consequently, not all of the line segments between the query drawing and the model section 

overlap, and those which do not, are considered as outliers (an outlier can be seen in Figure 4 

marked with a yellow arrow, whereas the green arrow shows an inlier). Another example where 

outliers occur is a drawing which consists of building elements not modelled in the BIM model, 

and therefore not appearing in the derived model sections. Accordingly, there is a need to 

estimate how many bases need to be sampled from the model section in order to select at least 

one error-free basis corresponding to the query drawing. 

 

Figure 4: Corresponding segment lines between a model section (at the top) and a query drawing (at the 

bottom). The presented part of the model section is mainly comprised of two cross-sections of two 

building elements marked with the green and blue fills. Using a green arrow, we mark an example of 

bases which correspond with each other (inliers), whereas in yellow, we mark an example of bases which 

do not correspond with each other (outliers). 

The naïve number of the sampled bases would equal to all of the segment-wise bases (as in the 

preprocessing stage executed on the query drawing). This, however, would increase the burden 

of building another full hash table, and what is worse, it would increase the matching ambiguity 

due to redundant bases. In order to reduce these drawbacks, we propose to estimate the minimal 

number of bases to be randomly sampled in the presence of outliers by using the random sample 

consensus so that at least one inlier is sampled. Having estimated the minimal number of 

sampled bases, we describe all the features in these bases and store them in another hash table 

which is being matched against the hash table of the query drawing. By doing this, we provide 

the full automation of the recognition phase (and thus the automation of the drawing-to-model 

registration). The major difference to the original geometric hashing is that the native procedure 

urges the user to choose an arbitrary basis in the to-be-recognized image, whereas we propose 

to build another hash table by storing the features described in a certain number of sampled 

bases (in which there is at least one inlier) estimated by RANSAC, and to match these two hash 

tables against each other. As a result, the matching bases between the model section and the 

query drawing can be determined.  
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Accordingly, we model the outliers as a random variable, and having assumed a certain outlier 

rate (ϵ), we sample k bases with very high probability (p) to select at least one (r) inlier basis. 

The number of trials (k) is computed as shown in equation 3 (Fischler and Bolles, 1981). 

𝑘 =
log⁡(1 − 𝑝)

log⁡(1 − (1 − 𝜖)𝑟)
 (3) 

2.4 Correspondence establishment 

Geometric hashing does not solve for explicit correspondence between all corresponding 

features (Belongie et al., 2002). Instead it uses the features to vote for a specific basis. As a 

consequence, the explicit correspondence in our proposed system can be automatically 

established only between most voted bases from each hash table. 

In our modified version, we simultaneously vote for bases in two hash tables. At the end, there 

is one basis in each hash table (in case of no redundant bases have been sampled in the 

recognition phase) that is most voted and we establish the correspondence between them. We 

do not explicitly recover all the feature-to-feature correspondences. Instead, we use the two 

corresponding bases between a drawing and a model section in 2D to align them. 

2.5 Determination of alignment 

Having found two corresponding bases, we align them in the following way: (1) The 

corresponding segment lines are viewed as vectors and the difference in scale between a model-

section and the drawing is determined by the quotient of the norms of these vectors; (2) The 

translation vector is calculated between the middle points of the corresponding segment lines; 

(3) The rotation angle is calculated using the formula for the vector-vector dot product, where 

the corresponding segment lines are seen are vectors. Having calculated the above parameters, 

the drawing is accordingly scaled, translated and rotated. 

3. Test case 

We demonstrate the applicability of the proposed system in a case study of a standard 3-story 

residential building. Our prototype operates on IFC-based BIM models, and construction 

drawings in the DXF format. The geometric hashing algorithm and its extension has been 

programmatically implemented from scratch based on the original paper and extended as 

described in the previous section. IFC and DXF readers, viewers, and scientific computing 

libraries are free-license packages. The visualization of the BIM model and the floor plan can 

be seen in Figure 5. The BIM model was created using a commercial BIM modeling tool. The 

floor plan was then derived and modified to conform to engineering standards using this tool. 

Ultimately, the model and the floor plan were exported to the IFC and the DXF data formats. 

We cut the IFC-based BIM model horizontally at 4 different levels (shown in Figure 6a) in such 

a way that the horizontal cutting plane is located at 1.20m above each floor level, which 

translates to the following building levels: -1.30m, 1.20m, 4.00m and 6.20m. The corresponding 

model sections are shown in Figure 6 b-e. The model sections are comprised of all the instances 

of parent type IfcProduct. The dimensions of the BIM model (and thus model sections) are 

stored in meters, whereas the dimension of the floor plan are stored in millimetres. 
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Figure 5: Visualization of a BIM model as a standard 3-story residentail building, and its corresponding 

floor plan portraying the ground floor derived at 1.20m level. 

In case of the floor plan, we first filter all the geometric primitives, select those with the highest 

stroke width and build a geometric hash table for all the extracted key-point features described 

in all the extracted bases (segment lines). Next, for each model section, we extract its key-point 

features and segment lines and build a geometric hash table. We calculate the number of 

randomly sampled bases with the probability for selection at least one error-free base (𝑝 = 0.99) 

and outlier rate (𝜖 = 0.9). In such a case, the number of sampled bases is equal to k = 44, which 

reduces the number of bases used to build the hash tables around 4-7 times in case of model 

sections b, c and d presented in Figure 6. In all the cases, we quantize the coordinates of features 

stored in the hash tables by a bin of size 0.24. 

 
   

 

(a) (b) (c) (d) (e) 

Figure 6: An IFC-based BIM model horrizontally cut at 4 different levels – figure a. Figues from b to e 

present the corresponding model sections. 

3.1 Experimental results 

We match the hash tables of each model section against the hash table of the query drawing. In 

Figure 7, we show the 3 most voted bases for each model section. The model section derived at 

level +1.20 is most voted, and within this level, there are two bases with a very high score. This 

level is also marked in green on the right side of the figure.  

 

 

Figure 7: Results obtained after matching the geometric hash table of the query drawing against all the 

geometric hash tables of the model sections. The first three most voted bases are presented. 
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The most voted basis at level +1.20 and the most voted basis from the query drawing are then 

proposed for setting up the correspondence, which is shown in Figure 8 on the left hand side. 

 

 

Figure 8: Left: The two corresponding bases between the query drawing and the most voted model 

section. Right: Aligned query drawing and model section. 

4. Conclusions and future work 

In this paper, we propose a robust feature-based shape matching method for the registration of 

construction drawings to BIM models with the extended geometric hashing at its core. We test 

this method in a case study of a standard 3-story residential building. The early experimental 

results are promising when it comes to measuring similarity with level-wise accuracy between 

floor plans in vector-based formats and BIM models using key-point features and segment line 

bases. The proposed reduction of basis space to segment lines reduces the burden for building 

hash tables due to its linear (and not quadratic) complexity. 

The proposed extension of geometric hashing allows to cast votes simultaneously in two hash 

tables and therefore, it is possible to automatically establish the correspondence between two 

most voted bases. The results show that this method correctly attributes the query drawing to 

one of the model sections, and correctly indicates two corresponding bases which allows to 

establish the explicit correspondence. As +1.20 level shows, however, the proposed random-

sample-consensus-based sampling of bases for model sections in the presence of outliers 

returned 2 inliers (1 redundant basis). Any redundant basis causes the matching ambiguity while 

setting up the explicit correspondence between two bases as the margin between the first and 

the second most voted bases is very little. In the future, in such situations, we propose to 

measure the similarity between the two registered objects by establishing more corresponding 

features and calculating the distance between them (for example using the L2 distance 

function). Moreover, it must be noted that the more similar the model sections are to the query 

drawing (fewer outliers), the more corresponding key-point features can be matched. In our 

case, the prototype operates on IFC models, whose pure cross-sections are comprised simply 

by cutting individual building elements which make the model section be prone to outliers (in 

comparison to the corresponding construction drawing). Additionally, such parameters as the 

outlier rate and the bin size need to be tuned on more real projects, as they drive the performance 

of this system, which we could not show in this paper due to its page limit. 

There are many other cases in which our registration system could be tested as well. Matching 

drawings of details which contain elements not necessarily modeled in BIM models (for 

example - highly detailed steel connections), matching vertical cross-sections or projections of 

facades are use cases which could be tested. In all of these cases, the derivation mechanism for 

model sections presented in this paper must be extended so that it returns good 2D candidates 
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for comparison to the query drawing. The derivation mechanism is potentially the biggest 

limitation in the proposed system because it is hard-coded for specific cases (horizontal model-

sections for floor plans, vertical models-sections for cross-sections and so on). Also, in case of 

drawings which are not comprised of mainly straight segment lines, we would have to extend 

the types of features that are supposed to be matched because the fewer key-point features 

extracted, the less confident the system is. Therefore, the second major limitation of the 

proposed system is its non-consideration of curved geometric primitives which limits the 

applicability of this system in certain cases with more advanced geometry. 

Overall, the proposed registration system shows promising results in building engineering for 

further automation of both the registration process and its subsequent consistency verification 

which could be used, for example, in the verification of consistency between construction 

drawings and BIM models at quality gates in approval process by authority. 
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