
Extensibility of Adaptation Capabilities in the
CAIN Content Adaptation Engine

Javier Molina, José M. Martínez, Víctor Valdés, Fernando López

Abstract—This paper describes the extensibility mechanism
that has been incorporated to the CAIN Adaptation Engine, that
provides audiovisual content adaptation based on user
preferences, network capabilities and terminal limitations. The
integration of new adaptation modules needs no code
modifications in the core system, so it does not have to be
recompiled for adding or modifying adaptation modules.

Index Terms—Adaptative Signal Processing, Multimedia
Systems.

I. INTRODUCTION

The development of both, new access networks providing
multimedia capabilities, and a wide and growing range of
terminals, makes the adaptation of content an important issue
in future multimedia services. Content adaptation is the main
objective of a set of technologies that can be grouped under
the umbrella of UMA (Universal Multimedia Access) [1].
In order to perform content adaptation it is necessary to have
the description of the content and the description of the usage
environment. To enhance the user’s experience [2], not only
terminal and network characteristics and conditions should be
taken into account when adapting, but also user preferences
and handicaps, as well as environmental conditions. All this
information imposes some constraints to the content to be
obtained after adaptation. In this paper section II presents the
current architecture of CAIN (Content Adaptation Integrator),
whilst section III details the differences with the previous
version and therefore explains the extensibility mechanism.
Section IV presents some conclusions and future research
work.

Manuscript received June 21, 2006.
Javier Molina, Grupo de Tratamiento de Imágenes, EPS, Universidad

Autonoma de Madrid, Madrid, Spain. phone: 0034-91-497-22-60; e-mail:
javier.molina@ uam.es).

J. M. Martínez, Grupo de Tratamiento de Imágenes, EPS, Universidad
Autonoma de Madrid, Madrid, Spain. e-mail: jm.martinez@ uam.es).

V. Valdés, Grupo de Tratamiento de Imágenes, EPS, Universidad
Autonoma de Madrid, Madrid, Spain. phone: 0034-91-497-22-60; e-mail:
victor.valdes@ uam.es).

F. López, Grupo de Tratamiento de Imágenes, EPS, Universidad Autonoma
de Madrid, Madrid, Spain. phone: 0034-91-497-22-60; e-mail: f.lopez@
uam.es).

II. CAIN SYSTEM OVERVIEW

A. CAIN Architecture
 CAIN is a complete multimedia Adaptation Engine
integrating different content adaptation approaches[3]. It is
constituted by three main modules: the DM (Decision
Module), the EM (Execution Module), and the “battery” of
CATs (Content Adaptation Tools), that is, the set of CATs
CAIN can use for content adaptation and made available to
CAIN thanks to the extensibility mechanism explained in III.
Currently we have integrated CATs belonging to the four
categories considered in the design of CAIN: ‘Transcoder
CATs’, ‘Scalable Content CATs’, ‘Real-time Content-driven
CATs’ and ‘Transmoding CATs’[4].

To make possible the work of the main modules, a set of
support modules are also necessary, which are basically
MPEG-7/21 XML parsers to make data (that is, descriptions)
accessible for the EM and the DM.

B. CAIN Adaptation Process
 First of all, we need a collection of CATs together with the
descriptions of their adaptation capabilities [5]. These
descriptions will be used by the DM, together with the content
description and the usage environment description, in order to
select the CAT that will perform the best adaptation.
 For performing an adaptation we need to receive, at least,
the input media content and a usage environment profile. It is
desirable, but unusual, to receive the associated content
description file. Therefore, the required media information
description is usually extracted directly from the content,
using ffmpeg library[6] .
The EM collects all the information extracted from the
required description files (media, usage environment, CAT
capabilities) and launches the DM. The DM selects both the
best CAT and its configuration parameters using a constraints
satisfaction and optimization algorithm [7]. Afterwards the
EM is able to execute the selected CAT, calling the adaptation
method (see section III.B) of the chosen CAT.

III. CAIN EXTENSIBILITY

 CAIN considers the integration of new CATs, as well as the
update of existing ones. For this purpose, it provides a flexible
extensibility mechanism in order to avoid recoding of the core
of CAIN as well as recompiling. One of the integration
requirements is to make the CAT´s capabilities accessible
from the DM. For this, we need to have a complete and lack
of ambiguity file, describing what transformations a concrete

CAT is able to do and with which input and output formats.
Another important requirement for CAT’s integration is the
compliance with interface defined for making the CAT
accessible by the CAIN core.

A. Content Adaptation Tool Plug-in
The main differences with the previous CAIN
version[3][4][5][7] are the following:

The integration of new CATs does not need any
modification in the system’s core. This allows to change
the set of available CATs before each execution of CAIN.
The conditions to be fulfilled when incorporating a new
CAT are only to be compliant with a defined interface , to
follow a certain naming policy (see sectionIII.B).
The functionality of a working CAT is modifiable even
without recoding its own code. This is possible by the
edition of the correspondent CAT capabilities description
file. This edition may allow the restriction of certain
formats in the input or output. The adaptation schemes can
also be modified in order to, for example, avoid certain
non-desired transcoding operations.

B. Content Adaptation Tool’s Interface
All the files implementing the CAT, or used by it, have to be
packaged in a *.jar file. This file has to share name with the
CAT it represents.
For integrating a new CAT we need, at least, two files:

The CAT code in a *.java file, with the same name as the
CAT. This code file should implement the
adapt(…)method, declared as abstract in its parent
class, CATImplementation.java.
The CAT Capabilities description[5] in a *.xml file with
the same name as the CAT. This description file will
contain the adaptation capabilities of the module being
integrated. This information is necessary for the DM, it
will use it for deciding in which situations the new CAT
should be launched by CAIN.

Apart from these mandatory files, it is also be necessary the
inclusion of any library used by the CAT. Any library should
be packaged together with the mandatory CAT code file.
The Adapt(…) method constitutes the common core to every
CAT. It is the method which, by a generic interface, performs
the different adaptations. It will be called by the EM and it is
expected to adapt in a proper fashion, because the DM has
chosen it after checking out, in the CAT´s capabilities
description file, that it is able to do so. It returns a list
containing the paths and formats of the adapted contents. It
can return more than a unique output. A CAT, for example,
could convert a video into a sequence of images (e.g.,
keyframes). In this case, the returned structure would contain
the paths and characteristics of each of the output images.

C. CAIN Content Adaptation Tool’s Management
The files of each integrated CAT should be packaged in a
*.jar file. This file is stored in a CATs’ folder together with
the other available CATs. When CAIN execution starts, the
CATs’ folder is checked uncompressing each *.jar file in an
execution space accessible by the EM and the DM.

IV. CONCLUSIONS AND FUTURE WORK

The proposed extensibility mechanism allows
implementation-agnostic integration of new CATs in order to
incorporate new functionalities without prior knowledge of
each tool capabilities and limitations. This allows to use CAIN
for service prototyping (as in currently being done in the EU
IST aceMedia Integrated Project), service deployment
(reducing the flexibility and numbers of CATs), and as a
benchmarking framework. For the later, it will be necessary to
incorporate the modules required for providing as result of the
adaptation a report of resource consumption (CAT processing
time, CPU and memory use, power consumed, temporary
storage space, …) as well as modules for comparing the
quality of different versions of adapted content, both being the
same or different adaptations, taking into account not only
objective, but also subjective quality measures focus in the
user’s perceived quality even in the case of transmoding.

ACKNOWLEDGMENTS

This work is partially supported by the European Commission
6th Framework Program under project FP6-001765
(aceMedia). This work is also supported by the Ministerio de
Ciencia y Tecnología of the Spanish Government under
project TIN2004-07860 (MEDUSA) and by the Comunidad
de Madrid under project P-TIC-0223-0505 (PROMULTIDIS).
The authors want to thank Víctor Fernández-Carbajales for
successful testing of the extensibility mechanism.

REFERENCES

[1] A. Vetro, C. Christopoulos, T. Ebrahimi (eds.), “Universal
Multimedia Access (special issue), IEEE Signal Processing
Magazine, 20(2), March 2003.

[2] F. Pereira, I. Burnett, “Universal Multimedia Experiences for
Tomorrow”, IEEE Signal Processing Magazine, 20(2):63-73,
March 2003.

[3] J.M. Martínez, V. Valdés, J. Bescós, L. Herranz, “Introducing
CAIN: A metadata-driven content adaptation manager
integrating heterogeneous content adaptation tools”,
Proceedings of the WIAMIS’2005 (CD-ROM), Montreux, April
2005.

[4] V. Valdés, J.M. Martínez, “Content Adaptation Tools in the
CAIN framework”, in Visual Content Processing and
Representation, L. Atzori, D.D. Giusto, R. Leonardi, F. Pereira
(eds.), Lecture Notes in Computer Science, Vol. 3893, Springer
Verlag, 2006, pp. 9-15

[5] V. Valdés, J.M. Martínez, “Content Adaptation Capabilities
Description Tool for Supporting Extensibility in the CAIN
Framework”, Multimedia Content Representation, Classification
and Security-MCRS2006, B.Günsel, A.K.Jain, A.M. Tekalp, B.
Sankur (eds.), Lecture Notes in Computer Science, Vol. 4105,
Springer Verlag, 2006, pp. 395-402

[6] http://ffmpeg.sourceforge.net/
[7] F. López, J.M. Martínez, V. Valdés, “Multimedia Content

Adaptation within the CAIN framework via Constraints
Satisfaction and Optimization”, Proceedings of the Fourth
International Workshop on Adaptative Multimedia Retrieval-
AMR06 (CD-ROM), 17 pp., Geneve, Suiza, July 2006, in press.

