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ABSTRACT
Transportation modes prediction is a fundamental task for de-
cision making in smart cities and traffic management systems.
Traffic policies based on trajectory mining can save money and
time for authorities and the public. It may reduce the fuel con-
sumption, commute time, and more pleasant moments for resi-
dents and tourists. Since the number of features that may be used
to predict a user transportation mode can be substantial, finding
a subset of features that maximizes a performance measure is
worth investigating. In this work, we explore a wrapper and an
information retrieval methods to find the best subset of trajectory
features for a transportation mode dataset. Our results were com-
paredwith two related papers that applied deep learningmethods.
The results showed that our work achieved better performance.
Furthermore, two types of cross-validation approaches were in-
vestigated, and the performance results show that the random
cross-validation method may provide overestimated results.
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1 INTRODUCTION
Trajectory mining is a very hot topic since positioning devices
are now used to track people, vehicles, vessels, natural phenom-
ena, and animals. It has applications including but not limited to
transportation mode detection [3, 6, 7, 31, 33], fishing detection
[4], tourism [8], vessels monitoring [5], and animal behaviour
analysis [9]. There are also a number of topics in this field that
need to be investigated further such as high performance trajec-
tory classification methods [3, 6, 20, 31, 33], accurate trajectory
segmentation methods [28, 30, 34], trajectory similarity and clus-
tering [10, 17], dealing with trajectory uncertainty [15], active
learning [29], and semantic trajectories [2, 22, 24]. These topics
are highly correlated and solving one of them requires to some
extent exploring more than one.

As one of the trajectory mining applications, transportation
mode prediction is a fundamental task for decision making in
smart cities and traffic management systems. Traffic policies that
are designed based on trajectory mining can save money and time
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for authorities and the public, may reduce the fuel consumption
and commute time, and may provide more pleasant moments for
residents and tourists. Since a trajectory is a collection of geolo-
cations captured through time, extracting features that show the
behavior of a trajectory is of prime importance. The number of
features that can be generated for trajectory data is significant.
However, some of these features are more important than others
for the transportation mode prediction task. Selecting the best
subset of features not only saves processing time but also may
increase the performance of the learning algorithm. The features
selection problem and the trajectory classification task were se-
lected as the focus of this work. The contributions of this paper
are listed below.

• We investigated several classifiers using their default pa-
rameters values and selected the one with the best perfor-
mance.

• Using two distinct feature selection approaches, we in-
vestigated the best subset of features for transportation
modes prediction.

• After finding the best subset of features for some classifiers,
we compare our results with the works of [3] and [6]. The
results showed that our approach performed better than
the others from the literature.

• Finally, we investigate the differences between the two
methods of cross-validation used by the literature on trans-
portation mode prediction. The results show that the ran-
dom cross-validation method may suggest overestimated
results in comparison to user-oriented cross-validation.

The rest of this work is structured as follows. The relatedworks
are reviewed in section 2. The basic concepts and definitions are
provided in section 3 and the proposed framework is presented
in section 4. We provide our experimental results in section 5.
Finally, the conclusions and future works are shown in section 6.

2 RELATEDWORKS
Feature engineering is an essential part of building a learning
algorithm. Some of the algorithms artificially extract features
using representation learning methods; On the other hand, some
studies select a subset from the handcrafted features. Both meth-
ods have advantages such as faster learning, less storage space,
performance improvement of learning, and generalized models
building [18]. These two methods are different from two perspec-
tives. First, artificially extracting features generates a new set
of features by learning, while feature selection chooses a subset
of existing handcrafted ones. Second, selecting handcrafted fea-
tures constructs more readable and interpretable models than



artificially extracting features [18]. This work focuses on the
handcrafted feature selection task.

Feature selection methods can be categorized into three gen-
eral groups: filter methods, wrapper methods, and embedded
methods [12]. Filter methods are independent of the learning algo-
rithm. They select features based on the nature of data regardless
of the learning algorithm [18]. On the other hand, wrapper meth-
ods are based on a kind of search, such as sequential, best first, or
branch and bound, to find the best subset that gives the highest
score on a selected learning algorithm [18]. The embedded meth-
ods apply both filter and wrapper [18]. Feature selection methods
can be grouped based on the type of data as well. The feature
selection methods that use the assumption of i.i.d. (independent
and identically distributed) are conventional feature selection
methods [18] such as laplacian methods [14] and spectral feature
selection methods [32]. They are not designed to handle hetero-
geneous or auto-correlated data. Some feature selection methods
have been introduced to handle heterogeneous data and stream
data that most of them working on graph structure such as [11].

Conventional feature selectionmethods are categorized in four
groups: similarity-based methods like laplacian methods[14], In-
formation theoretical methods [26], sparse learningmethods such
as [19], and statistical based methods like chi2 [21]. Similarity-
based feature selection approaches are independent of the learn-
ing algorithm, and most of them cannot handle feature redun-
dancy or correlation between features[21]. Likewise, statistical
methods like chi-square cannot handle feature redundancy, and
they need some discretization strategies[21]. The statistical meth-
ods are also not effective in high dimensional space[21]. Since
our data is not sparse and sparse learning methods need to over-
come the complexity of optimization methods, and they were
not a candidate for our experiments. On the other hand, infor-
mation retrieval methods can handle both feature relevance and
redundancy[21]. Furthermore, selected features can be gener-
alized for learning tasks. Information gain, which is the core
of Information theoretical methods, assumes that samples are
independently and identically distributed. Finally, the wrapper
method only sees the score of the learning algorithm and tries to
maximize the score of the learning algorithm.

The most common evaluation metric reported in the related
works is the accuracy of the models. Therefore, we use the ac-
curacy metric to compare our work with others from literature.
Since the data was imbalanced, we reported the f-score as well
to give equal importance to precision and recall. Despite the fact
that most of the related work applied the accuracy metric, it
is calculated using different methods including random cross-
validation, cross-validation with dividing users, cross-validation
with mix users and simple division of the training and test set
without cross-validation. The latter is a weak method that is used
only in [35]. The random cross-validation or the conventional
cross-validation was applied in [31], [20] , and [3]. [33] mixed the
training and test set according to users so that 70% of trajectories
of a user goes to the training set and the rest goes to test set. Only
[6] performed the cross-validation by dividing users between the
training and test set. Because trajectory data is a kind of data with
spatial and temporal dimensions, users can also be placed in the
same semantic hierarchical structure such as students, worker,
visitors, and teachers, a conventional cross-validation method
could provide overestimated results as studied in [27].

3 NOTATIONS AND DEFINITIONS
Definition 3.1. A trajectory point, li ∈ L, so that li = (xi ,yi , ti ),

where xi is longitude and it varies from 0◦ to ±180◦, yi is latitude
and it varies from 0◦ to ±90◦, and ti (ti < ti+1) is the capturing
time of the moving object, and L is the set of all trajectory points.

A trajectory point can be assigned by some features that de-
scribe different attributes of the moving object with a specific
time-stamp and location. The time-stamp and location are two
dimensions that make trajectory point spatio-temporal data with
two important properties: (i) auto-correlation and (ii) heterogene-
ity [1]. These features make the conventional cross validation
less suitable [27].

Definition 3.2. A raw trajectory, or simply a trajectory τ , is
a sequence of trajectory points captured through time, where
τ = (li , li+1, .., ln ), li ∈ L, i ≤ n.

Definition 3.3. A sub-trajectory is one of the consecutive sub-
sequences of a raw trajectory generated by splitting the raw
trajectory into two or more sub-trajectories.

For example, if we have one split point, k , and τ1 is a raw
trajectory then s1 = (li , li+1, ..., lk ) and s2 = (lk+1, lk+2, ..., ln )
are two sub trajectories generated by τ1.

Definition 3.4. The process of generating sub-trajectories from
a raw trajectory is called segmentation.

We used a daily segmentation of raw trajectories and then seg-
mented the data utilizing the transportation modes annotations
to partition the data. This approach is also used in [6] and [3].

Definition 3.5. A point feature is a measured value Fp , assigned
to each trajectory points of a sub trajectory s .

Fp = (fi , fi+1, .., fn ) (1)
Notation 1 shows the feature Fp for sub trajectory s . For example,
speed can be a point feature since we can calculate the speed
of a moving object for each trajectory point. Since we need two
trajectory points to calculate speed, we assume the speed of the
first trajectory point is equal to the speed of the second trajectory
point.

Definition 3.6. A trajectory feature is a measured value Ft ,
assigned to a sub trajectory, s .

Ft =
Σfk
n

(2)

Equation 2 shows the feature Ft for sub trajectory s . For ex-
ample, the speed mean can be a trajectory feature since we can
calculate the speed mean of a moving object for a sub trajectory.

The Fpt is the notation for all trajectory features that generated
using point feature p. For example, F speedt represents all the
trajectory features derived from speed point feature. Moreover,
F
speed
mean denotes the mean of the trajectory features derived from
the speed point feature.

4 THE FRAMEWORK
In this section, the sequence of steps of q framework with eight
steps are explained (Figure 1). The first step groups the trajectory
points by Trajectory id to create daily sub-trajectories (segmenta-
tion). Sub-trajectories with less than ten trajectory points were
discarded to avoid generating low-quality trajectories.



Figure 1: The steps of the applied framework to predict transportation modes.

Point features including speed, acceleration, bearing, jerk,
bearing rate, and the rate of the bearing rate were generated
in step two. The features speed, acceleration, and bearing were
first introduced in [34], and jerk was proposed in [3]. The very
first point feature that we generated was duration. This is the
time difference between two trajectory points. This feature gives
us essential information including some of the segmentation
position points, loss signal points, and is useful in calculating
point features such as speed, and acceleration. The distance was
calculated using the haversine formula. Having duration and
distance as two point features, we calculate speed, acceleration
and jerk using Equation 3, 4 , and 5 respectively. A function to
calculate the bearing (B) between two consecutive points was
also implemented and is detailed in Equation 6, where ϕi , λi is
the start point, ϕi+1, λi+1 the end point.

Si =
Distancei
Durationi

(3)

Ai+1 =
(Si+1 − Si )

∆t
(4)

Ji+1 =
(Ai+1 −Ai )

∆t
(5)

Bi+1 = atan2(sin λi+1 − λi cosϕi+1,
cosϕi sinϕi+1 − sinϕi cosϕi+1 cos λi+1 − λi )

(6)

Two new features were introduced in [7], named bearing rate,
and the rate of the bearing rate. Applying equation 7, we com-
puted the bearing rate.

Brate(i+1) =
(Bi+1 − Bi )

∆t
(7)

Bi and Bi+1 are the bearing point feature values in points
i and i + 1. ∆t is the time difference. The rate of the bearing
rate point feature is computed using equation 8. Since extensive
calculations are done with trajectory points, it was necessary an
efficient way to calculate all these equations for each trajectory.
Therefore, the code was written in a vectorized manner in Python
programming languagewhich is faster than other online available
python versions of the bearing calculation. It can be possible to
gain more performance using other languages like C/C++.

Brrate(i+1) =
(Brate(i+1) − Brate(i))

∆t
(8)

After calculating the point features for each trajectory, the tra-
jectory features were extracted in step three. Trajectory features
were divided into two different types including global trajectory

features and local trajectory features. Global features, like the
Minimum, Maximum, Mean, Median, and Standard Deviation,
summarize information about the whole trajectory and local tra-
jectory features, percentiles ( 10, 25, 50, 75, and 90), describe
a behavior related to part of a trajectory. The local trajectory
features extracted in this work were the percentiles of every
point feature. Five different global trajectory features were used
in the models tested in this work. In summary, we computed
70 trajectory features ( 10 statistical measures including five
global and five local features calculated for 7 point features)
for each sample trajectory. In Step 4, two feature selection ap-
proaches were performed, wrapper search and information re-
trieval feature importance. According to the best accuracy results
for development set , a subset of top 19 features was selected in
step 5. The code implementation of all these steps is available at
https://github.com/metemaad/TrajLib.

In step 6, the framework deals with noise in the data option-
ally. This means that we ran the experiments with and without
this step. Finally, we normalized the features (step 7) using the
Min-Max normalization method to avoid saturation, since this
method preserves the relationship between the values to trans-
form features to the same range and improves the quality of the
classification process [13]. Another possible method is Z normal-
ization; however, finding the best normalization method was out
of the scope of this work.

5 EXPERIMENTS
In this section, we detail the four experiments performed in
this work. In this work, we used the GeoLife dataset [34]. This
dataset has 5,504,363 GPS records collected by 69 users, and is la-
beled with eleven transportation modes: taxi (4.41%); car (9.40%);
train (10.19%); subway (5.68%); walk (29.35%); airplane (0.16%);
boat (0.06%); bike (17.34%); run (0.03%); motorcycle (0.006%); and
bus (23.33%). Two primary sources of uncertainty of the Geolife
dataset are device and human error. This inaccuracy can be cate-
gorized in two major groups, systematic errors and random errors
[16]. The systematic error occurs when the recording device can-
not find enough satellites to provide precise data. The random
error can happen because of atmospheric and ionospheric effects.
Furthermore, the data annotation process has been done after
each tracking as [34] explained in the Geolife dataset documen-
tation. As humans, we are all subject to fail in providing precise
information; it is possible that some users forget to annotate the
trajectory when they switch from one transportation mode to



Figure 2: Among the trained classifiers random forest
achieved the highest mean accuracy.

another. For example, the changes in the speed pattern might be
a representation of human error.

Moreover, we divide data into two folds: development set and
validation set. These two folds divided in a way that each user
can be either in development set or validation set. Therefore,
there is no overlap in terms of users. This division is applied for
user-oriented cross validation. We divide the validation fold to
five folds to do the cross validation and using this fold to compare
our results with related work.

The best classifier using their default input parameters (Sec-
tion 5.1) was found in our first experiment (check scikit-learn
documentation1 for the classifiers default parameters values).
Tuning the classifiers parameters may lead to find a better classi-
fier, but doing a grid search is expensive and does not change the
framework. In our second experiment (Section 5.2), the wrapper
and information theoretical methods are used to search the best
subset of our 70 features for the transportation modes prediction
task. The third experiment (Section 5.3) is a comparison between
[6] and [3] and our implementation. In the last experiment (Sec-
tion 5.4), the type of cross validation was investigated.

In order to avoid using non-parametric statistical tests, we
repeat the experiments with different seeds and collect more
than 30 samples for performing the statistical tests. According to
central limit theorem, we can assume these samples follow the
normal distribution. Therefore, t-test results are reported.

5.1 Classifier selection
In this experiment, we investigated among six classifiers, which
classifier is the best. The experiment settings use to conventional
cross-validation and to perform the transportation mode predic-
tion task showed on [3]. XGBoost, SVM, decision tree, random
forest, neural network, and adaboost are six classifiers that were
applied in the reviewed literature [7, 31, 33, 35].2 The dataset is
filtered based on labels that have been applied in [3] (e.g., walk-
ing, train, bus, bike, driving) and no noise removal method was
applied. The classifiers mentioned above were trained, and the
accuracy metric was calculated using random cross-validation
similar to [20], [31], and [3]. This experiment was repeated for
eight randomly selected seeds (8, 65, 44, 7, 99, 654, 127, 653) to
generate more than 30 result samples that make safe to assume
a normal distribution for results based on central limit theorem.
The results of cross validation accuracy, presented in figure 2,
1https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
2available on https://github.com/metemaad/trajpred

show that the random forest performs better than other models
(µaccuracy = 0.8189,σ = 0.10%) on the development set.

The results of cross validation f-score, presented in figure 3,
show that the random forest performs better than other models
(µf 1 = 0.8179,σ = 0.12%) on the development set.

The second best model was XGBoost (µaccuracy = 0.8245,σ =
0.11%). The XGBoost was ranked the second because a paired
T-Test indicated that the random forest classifier results were
not statistically significantly higher than the XGBoost classifier
results, but since it has a higher variance than random forest,
we decided to rank random forest as first. In the other hand,
paired t-tests indicated that the random forest classifier results
were statistically significantly higher than the SVM, decision tree,
Neural Network, and Adaboost classifiers results.

Figure 3: Among the trained classifiers random forest
achieved the highest mean F-score.

5.2 Feature selection using wrapper and
information theoretical methods

The second experiment aims to select the best features for trans-
portation modes prediction task for the Geolife dataset.

We select one method from filter category which is informa-
tion theoretical method to see the effect of the heterogeneity of
data on feature selection method. Another method was selected
from wrapper category which is the full search wrapper method.
Filter methods suffer from having i.i.d assumption, while wrap-
per methods do not. Therefore, comparing these two methods
shows the importance of taking into account the heterogeneity
of features of trajectory data.

We selected the wrapper feature selection method because
it can be used with any classifier. Using this approach, we first
defined an empty set for selected features. Then, we searched
all the trajectory features one by one to find the best feature to
append to the selected feature set. The maximum accuracy score
was the metric for selecting the best feature to append to selected
features. After, we removed the selected feature from the set of
features and repeated the search for union of selected features
and next candidate feature in the feature set. We selected the
labels applied in [6] and the same cross-validation technique.

The results are shown in figure 4. The results of this method
suggest that the top 19 features get the highest accuracy. There-
fore, we selected this subset as the best subset for classification
purposes using the random forest algorithm.

Information theoretical feature selection is one of the meth-
ods widely used to select essential features. Random forest is a



Figure 4: Accuracy of random forest classifier for incremental appending features ranked by random forest feature im-
portance.

classifier that has embedded feature selection using information
theoretical metrics. We calculated the feature importance using
random forest. Then, each feature is appended to the selected
feature set and calculating the accuracy score for random forest
classifier. The user-oriented cross-validation was used here, and
the target labels are similar to [6]. Figure 5 shows the results of
cross-validation for appending features with respect to the impor-
tance rank suggested by the random forest. We chose the wrapper
approach results since it produces statistically significant higher
accuracy score.

5.3 Comparison with the related work
In this third experiment, we filtered transportation modes which
have been used by [6] for evaluation. We divided the validation
fold into the training and test folds in a way that each user
can appear only either in the training or test fold. The top 19
features were selected to be used in this experiment which is
the best features subset mentioned in section 5.2. Therefore, we
approximately divided 80% of the data as training and 20% of the
data as the test set.

We selected [6] because this is the only paper that divided
the dataset in a way that isolated users in training and test set.
Moreover, This research applied the handcrafted features and
interpretable classifiers, while [3] did not isolated users and used
representation learning features. Therefore, these two research
are in the two ends and spectrum and comparing our results with
theirs and may provide insights for validating our results.

We assume the bayes error is the minimum possible error
and human error is near to the bayes error [23]. Avoidable bias
is defined as the difference between the training error and the
human error. Achieving the performance near to the human
performance in each task is the primary objective of the research.
The recent advancements in deep learning lead to achieving some
performance level even more than the performance of doing the

task by human because of using large samples and scrutinizing
the data to fine clean it. However, “we cannot do better than
bayes error unless we are overfitting". [23]. Having noise in GPS
data and human error, as we discussed, suggest that the avoidable
bias is more than five percent. This ground truth was our base to
exclude papers that reported more than 95% of accuracy.

Thus, we compare our accuracy per segment results, repeated
for 8 different seeds, against [6] mean accuracy, 67.9%. A one-
sample T-test indicated that our accuracy results (70.97%) are
higher and statistically significantly better than [6]’s results
(67.9%), p=0.0182.

The label set for [3]’s research is walking, train, bus, bike,
taxi, subway, and car so that the taxi and car are merged and
called driving. Moreover, subway and train merged and called
the train class. We filtered the Geolife data to get the same sub-
sets as [3] reported based on that. Then, we randomly selected
80% of the data as the training and the rest as test set, we ap-
plied five-fold cross-validation and repeated this for 8 different
seeds. The best subset of features was the same as the previous
experiment (Section 5.2). Running the random forest classifier
with 50 estimators, using SKlearn implementation [25], results
on a mean accuracy of 87.16% for the five-fold cross-validation.
A one-sample T-test indicated that our accuracy results (87.16%)
are higher and statistically significantly better than [3]’s results
(84.8%), p=2.27e-12.

We avoided using the noise removal method in the above
experiment because we believe we do not have access to labels of
the test dataset and using this method only increases our accuracy
unrealistically.

5.4 Effects of types of cross-validation
To visualize the effect of type of cross-validation on transporta-
tion modes prediction task, we set up a controlled experiment.
We used the same classifiers and same features to calculate the



Figure 5: Accuracy of random forest classifier for incremental appending best features

cross-validation accuracy on the whole dataset. Only the type of
cross-validation is different in this experiment, one is random,
and another is user-oriented cross-validation. Figure 6 shows that
there is a considerable difference between the cross-validation
accuracy results of user-oriented cross-validation and random
cross-validation.

Figure 6: The accuracy cross-validation results foruser ori-
ented cross-validation and random cross-validation

Furthermore, figure 7 shows that there is a considerable differ-
ence between the cross-validation f-score results of user-oriented
cross-validation and random cross-validation.

These results indicate that random cross-validation provides
overestimated accuracy and f-score results. Since the correla-
tion between user-oriented cross-validation results is less than
random cross-validation, proposing a specific cross-validation
method for evaluating the transportation mode prediction is a
topic that needs attention.

Figure 7: The F-score cross-validation results for user ori-
ented cross-validation and random cross-validation

6 CONCLUSIONS
In this work, we reviewed some recent transportation modes
prediction methods and feature selection methods. We proposed
a framework for transportation modes prediction and four experi-
ments were conducted to cover different aspects of transportation
modes prediction.

First, the performance of six recently used classifiers for the
transportationmodes predictionwas evaluated. The results showed
that the random forest classifier performs the best among all the
evaluated classifiers. The SVM was the worst classifier, and the
accuracy result of XGBoost was competitive with the random
forest classifier.

In the second experiment, the effect of features using two
different approaches, the wrapper method and information theo-
retical method were evaluated. The wrapper method shows that
we can achieve the highest accuracy using the top 19 features.



Both approaches suggest that the F speedp90 (the percentile 90 of
the speed as defined in section 3) is the most essential feature
among all 70 introduced features. This feature is robust to noise
since the outlier values do not contribute to the calculation of
percentile 90.

In the third experiment, the best model was compared with
the results showed in [6] and [3]. The results show that our
suggestedmodel achieved a higher accuracy. Our applied features
are readable and interpretable in comparison to [6] and our model
has less computational cost.

Finally, we investigate the effects of user-oriented cross-validation
and random cross-validation in the last experiments. The results
showed that random cross-validation provides overestimated
results in terms of the analyzed performance measures.

We intend to extend this work in many directions. The spa-
tiotemporal characteristic of trajectory data is not taken into
account in most of the works from literature (e.g. autocorrelation
and heterogeneity). Fine tuning the classification models with
grid search and automatic (e.g. Genetic Algorithms, Racing algo-
rithms, and meta-learning) methods. We also intend to deeply
investigate the effects of cross-validation and other strategies like
holdout in trajectory data. Finally, space and time dependencies
can also be explored to tailor features for transportation means
prediction.
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