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Abstract. Graph-based modelling is becoming more popular, in the sciences and elsewhere, as a 
flexible and powerful way to exploit data to power world-changing digital applications. Com-
pared to the initial vision of the Semantic Web, knowledge graphs and graph databases are be-
coming a practical and computationally less formal way to manage graph data. On the other hand, 
linked data based on Semantic Web standards are a complementary, rather than alternative, ap-
proach to deal with these data, since they still provide a common way to represent and exchange 
information. In this paper we introduce rdf2neo, a tool to populate Neo4j databases starting from 
RDF data sets, based on a configurable mapping between the two. By employing agrigenomics-
related real use cases, we show how such mapping can allow for a hybrid approach to the man-
agement of networked knowledge, based on taking advantage of the best of both RDF and prop-
erty graphs. 
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Availability: rdf2neo is available as open source software and shared on the GitHub code re-
pository, at the URL https://github.com/Rothamsted/rdf2neo 

1 Background 

Sharing data, information and knowledge is ever more important in life sciences [1] 
and other human activities [2]. As recently highlighted by the well-known paper about 
the FAIR principles [3], we can achieve maximum benefits from data by sharing them 
according to the principles of Findability, Accessibility, Interoperability and Reusabil-
ity. In the life science and other sciences the linked data approach [4] and the Semantic 
Web technologies [5] allow for the integration of heterogeneous knowledge and the 
study of phenomena involving interdependencies at multiple scales [6–8]. Over the 
years, science data practitioners have developed high quality data models, mostly based 
on ontology engineering and other highly formal modelling techniques [9]. While this 
gives advantages in many applications, for instance by allowing for advanced automatic 
reasoning and data validation [10], it is difficult for both software developers and do-
main experts to deal with these models and curate data that comply with them [11], 
especially when data are shared on a large scale [12]. For these reasons, knowledge 
graphs have appeared, especially in commercial contexts [13,14], where data are mod-
elled in a more semi-formal way and logical inference is based on statistics and heuristic 
techniques, not only on formal logics [15]. At the infrastructural level, a number of data 
storage solutions have emerged in the last decade (or even conceived before the Se-
mantic Web), including distributed relational-like databases, the so-called NoSQL da-
tabases [16,17] and graph databases based on the idea of property graphs (PG, [18–
20]). Property graphs are different from triple stores based on the RDF’s Semantic Web 



2 

standard, in three key ways [21]. Firstly, the PG data model is more coarse-grained than 
RDF, allowing the model to group all the datatype properties of an entity in a single 
node, whereas they require multiple triples in RDF. In a PG this is extended to the graph 
edges, i.e., binary relations linking entities, which can be enriched with attributes de-
scribing aspects like the provenance of a relation or its confidence score. Doing the 
same in RDF is known to be more complicated, since it requires graph patterns like 
reification [22]. On the other hand, the finer granularity of RDF makes it easier to do 
operations like merging attribute lists about an entity coming from different data 
sources. A second difference is in the underlying philosophy of PG projects like Neo4j 
(and, more in general, of NoSQL databases [20]), in the sense that many use cases are 
focused on providing stores for single applications and single organisations, with less 
commitment to, and support for standardisation, interoperability and sharing. This con-
trasts with the priorities in the Semantic Web World, where sharing and interoperability 
are primary motivations. A third difference is that triple stores are best at graph pattern 
searches, rather than more local searches based on graph-traversal algorithms, for 
which several PG databases are optimised [23]. 

1.1 Motivating Use Case 

Our group has been involved in biological data integration and discovery for many 
years. In particular, we maintain the KnetMiner software suite [24], primarily based on 
web components, which can be used to explore large scale and semantically-rich 
knowledge networks, named Genome-Scale Knowledge Networks (GSKN [25]). Start-
ing from keyword-based search, the user can explore networked knowledge that include 
genes, encoded proteins, phenotypes, disease, biological pathways and PUBMED cita-
tions. We use KnetMiner mostly to support the analysis of plant biology and agri-
genomics-related organisms. Our published data sets include Arabidopsis, wheat, rice 
and maize. Our data types include ENSEMBL genes [26], AraCyc pathways [27] and 
Plant Ontology [28]. Recently we have started to redesign the backend architecture that 
KnetMiner is based on (see Figure 2 in [29]). In so doing, we aim to address three 
different objectives: i) better separation between data access services and data client 
applications, namely adopting web APIs and common graph-oriented query languages 
ii) management of data through common graph-oriented database servers, rather than 
ad-hoc solutions iii) Publicly sharing our data by means of well-known data standards. 
Based on a preliminary analysis of several options available [30] and further investiga-
tions presented in this paper, we propose that a “traditional” linked data approach can 
usefully be combined with the adoption of more recent property graph systems. In par-
ticular, we have developed BioKNO [29], a lightweight OWL-based ontology, falling 
under the category of application ontologies [31], which we are using as the reference 
data model to integrate biological data from external sources, available in different for-
mats and data models. In order to facilitate data integration tasks as well as the devel-
opment of Semantic Web-oriented applications, we have made a SPARQL endpoint 
available, based on the Virtuoso triple store [32]. Moreover, we have established a data 
pipeline to convert our RDF-based data (hence, after initial extraction, loading, trans-
formation, or ELT) into Cypher instructions, to be used to populate instances of the 
Neo4j property graph database [33]. We have decided to add this additional data access 
channel, because our bioinformaticians consider Cypher and Neo4j useful tools for a 
number of tasks. For instance, we are using Cypher as a query language for what we 
call semantic motif searches [24], which are graph pattern-based searches tracking well-
known relation paths between biological entities (e.g. Gene-> expresses->Protein-
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>published_in->Publication). We use semantic motifs for searching plant biology data, 
to implement term-based gene searches and to rank results based on scoring the rele-
vance of a gene to the searches. 
In order to support our use case, we have developed rdf2neo [34], a tool that can be 
flexibly used to map any RDF schema to a desired PG schema, so that it is possible to 
rely on RDF/OWL for data modelling and acquisition purposes and then deliver data 
through a number of useful formats and technologies. In particular, the configurable 
mapping available in our tool eases the definition of PG schemas aligned to the RDF-
based model, which favours a data-centric application development. 

2 Methods & Implementation 

2.1 The rdf2neo Approach 

rdf2neo is implemented as a Java library, which can be used either programmatically 
or by means of a command-line package. As shown in Fig. 1, its main function is map-
ping an RDF-based data model to a Property Graph data model, which is eventually 
created by a set of Cypher commands. SPARQL is used to select groups of values that 
make up the entities of a target property graph (nodes or relations). This works in two 
steps. Considering the case of PG nodes, first a query selects URIs1 of RDF resources 
that correspond to PG nodes (e.g., bkr:tob1 in the figure). Then, each of those URIs is 
used to instantiate two other SPARQL queries, both parameterised on a conventionally-
named variable (?iri). One query is used to extract node labels (usually analogous to 
RDF/RDF-S/OWL classes), the other is used to extract pairs of property name + value 
for that node (e.g., dcterms:title, bka:YEAR). These node-related data are then used to 
issue Cypher instructions to a Neo4j server. Relationship mapping is similar to the node 
case: one SPARQL query, lists all the PG desired relationships, together with the URIs 
of the relationship origin and destination nodes, as well as a string about the relationship 
type (contrary to node labels, a relationship can have one type only in Cypher/Neo4j). 
Another SPARQL query, instantiated with the relationship’s URI, lists the relationship 
property/value pairs, if any (bka:Score in our figure). In both node and relationship 
creation, the original node/relationship URI is always stored on the Neo4j side, by 
means of the property named ‘iri’. This, in addition to being useful for future reference, 
is used for our operations, to refer nodes during the relationship creation stage. 
The process above is implemented in the architecture shown in Fig. 2. This comprises 
a component that selects node URIs  (same for relation pointers) and dispatches them 
to parallel threads, each fetching node (or relation) details, to eventually populate Neo4j 
via Cypher. 
The SPARQL files we mentioned above are part of rdf2neo configuration, which is 
managed through Spring Beans configuration files [35]. This way, the task of translat-
ing a new RDF data set into a Neo4j database consists of defining new SPARQL map-
ping queries in a set of files and passing them to rdf2neo through a Spring configuration. 
This makes configuration flexible and convenient for the many developers who are fa-
miliar to Spring. 

                                                        
1 In the code we use the term IRI in order to mean the general case, where practically IRIs can be 

considered as URIs with international support. Hereby, we call them with the better known 
URIs word and, for what matters us, the two acronyms can be considered synonyms. 
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Fig. 1. neo2rdf mapping approach. a,b) A SPARQL query selects URIs of resources to be 

turned into property graph nodes (instances of concepts in our case). Each of such URIs instan-
tiates two parameterised queries, to pick up node’s labels (i.e., types) and node’s named proper-
ties (URIs are automatically shortened and turned into strings like ‘Protein’). c) Relation point-

ers and their properties are selected in a similar way. 
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Fig. 2. Core components of the rdf2neo architecture, node case. In the main thread, a processor 

issues the SPARQL to select node URIs. Then URIs are sent to parallel instances of a node 
handler, which instantiates parameterised queries to get node labels and node name/value prop-

erties. The handler uses these results to build Cypher commands for node creation. Relations 
are created with similar components. SPARQL queries and other elements (e.g., Neo4j creden-

tials) are configured via Spring Beans. 

2.2 Formal Analysis 

In order to ensure the correctness of the RDF/PG process described above, as well as 
study relevant properties, we have developed a formalisation of it (see Supplementary 
Document 1). One result we achieved from this analysis is that the computational com-
plexity of our conversion procedures is mainly affected by the SPARQL mapping, and 
less by the overhead of Neo4j/Cypher interaction. Thus, the key factor for improving 
the performance of rdf2neo is by optimising the specific SPARQL queries used to re-
alise such a mapping in a given use case [36,37]. 

3 Results 

In order to assess the performance of the two types of graph databases we use, we have 
created a preliminary simple benchmark of specific aspects of interest to us. Namely, 
we compared Virtuoso to Neo4j. On the one hand, we made a qualitative evaluation of 
how easy it is to write queries in both SPARQL and Cypher languages. On the other 
hand, we assessed the speed of the respective query engines, when used with the typical 
data that we deal with in the KnetMiner project. This included an evaluation of scala-
bility issues, both in the case of data loading and data querying. Results are summarised 
below. 
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Fig 3. Query performance of Virtuoso and Neo4j. Top: typical graph in tested data sets (other 
queries are about Gene Ontology and other ontology trees). Charts: Three test data sets, of in-
creasing size, first two from the plant species Arabidopsis (A. thaliana), third from wheat (T. 

eestivum). Every data set was tested against Virtuoso and Neo4j. All execution times are in ms. 

3.1 Test Settings 

As shown in [38] in detail, we have made separate tests for Virtuoso and Neo4j. For 
each database, we tested three different data sets, having different sizes and degrees of 
data complexity in terms of types of entities and relations represented. The data sources 
are the same we use for powering the KnetMiner application (see section 1.1). In our 
tests, we focused mainly on biological pathways and gene ontology annotations from 
the Arabidopsis and wheat plant species. Fig. 3 shows a typical graph structure that 
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occurs in all the three data sets, which is explored by many of the queries we used for 
the tests. In writing the queries, we considered aspects like: a) basic functionality (e.g., 
‘cnt*, ‘sel’ queries in the cited document) b) typical data retrieval occurring in our ap-
plications, as said, these are mainly navigating biological pathways (e.g., ‘join*’, ‘*un-
ion*’) and ontologies (‘varPath*’) c) complex queries, known to be challenging for 
most query engines (‘pway’, ‘grp*’, ‘*exist*’, ‘*Ag’), including queries inspired by 
other benchmarks available in literature (‘nestAg’). For each of these query types, we 
wrote both a Cypher and SPARQL version. Writing two similar versions for the same 
data retrieval semantics was fairly easy in most cases, thanks to the use of a common 
data model. 

3.2 Performance of Data Loading and Querying 

Figure 1 in [38] shows the loading times we obtained for the three tested data sets and 
the two graph databases. The higher loading times in the case of Neo4j are due to the 
fact that these include the rdf2neo conversion described above, which spends time load-
ing BioKNO/RDF data into its embedded TDB instance, as well as in querying them 
using the SPARQL mapping queries. While we plan to improve the performance of our 
tool, its conversion operations cannot be made as fast as loading plain RDF into effi-
cient triple stores. That said, these times seem reasonable for a batch operation, which 
is not needed very often (a few times per year, when we update our data sets). Moreo-
ver, as expected, rdf2neo scales well enough with the input size. 
Results from the query performance are reported in Fig. 3. As expected, Neo4j performs 
well in graph traversal queries (up to 17x), where initial nodes are matched against the 
query and then the graphs connected to them are expanded. Property graph databases 
like Neo4j are known to be optimised for this kind of task. On the other hand, Virtuoso 
showed performance better than, or comparable to Neo4j for queries involving the un-
ion of graph branches (eg, ‘2union’, ‘nestAg’, ‘exist’), for queries having mostly ‘tuple-
like’ patterns (eg, 3x for ‘joinRe’, 8x for ‘joinReif’), where graph patterns have to be 
matched by searching several triple patterns and graph traversal does not bring many 
advantages, and, probably for similar reasons, for queries involving aggregation 
(‘*grp*’ and ‘*Ag’ queries). Most queries scale well with the data set size. We were 
surprised to see significant differences (up to 14s versus less than 1ms) in queries like 
‘count all nodes’ or ‘select all instances of a given type’. Presumably, Neo4j is much 
faster at running them because it exploits indices of coarse-grained node structures, 
while Virtuoso indices cannot rely on node-level aggregation. 

3.3 Qualitative Considerations 

An area where the Semantic Web technologies still appear to be more suitable than 
property graphs is in data integration. For instance, in RDF systems the merging of data 
about the same entities happens almost for free, by ensuring that URIs generated in 
different data sets are the same when they represent the same real-world entities. A set 
of techniques for doing so are known (e.g., [39]) and tools like TARQL [40] exist, to 
translate from format like CSV to RDF. Such tools often rely on the same Semantic 
Web standards they target (e.g., TARQL uses SPARQL). Schema mapping and align-
ment is another area where Semantic Web technologies are useful. As a small example 
of that, see the federated search example mentioned in [29], which was made possible 
by mapping our BioKNO ontology to standards like BioPAX. On the other hand, a 
system like Neo4j appears to be particularly good in the more classical scenario where 
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a data repository is accessed by a limited set of applications and users, who can rely on 
simple and well-known schemas, without having the wider Semantic Web ambitions of 
data integration on a very large scale. As explained above, the semantic motif case is 
an example of that. In fact, the typical semantic motif query that we need to study agri-
genomics-related knowledge networks is a graph pattern representing a chain of given 
node and relation types, a kind of pattern that is a first-class citizen in Cypher, while 
the same requires a more verbose syntax in the triple-oriented SPARQL. These query 
language considerations vary significantly when other use cases are considered. For 
instance, the query 2union1Nest from our benchmarking queries shows that matching 
multiple branches in a single SPARQL query is relatively straightforward, mostly 
thanks to the possibility to nest UNION constructs and define an overall graph pattern 
that reflects the queried data branching structure quite closely (e.g., see red and blue 
paths in the Fig. 3 graph). Doing something similar in Cypher can be challenging, even 
for simple cases, although this might improve in future [41,42]. 

3.4 Limits 

The tests described here are not intended to be comprehensive or general, as in the case 
of works like [43,44]. Our evaluation is limited to the typical use cases we deal with in 
the KnetMiner project, that is, knowledge networks about molecular biology, mostly 
biological pathways and ontologies. Furthermore, we have only considered two popu-
lar, knowingly performant graph databases for RDF and property graphs, although there 
are many alternatives [45,46]. Finally, we have run the tests sending one query at a time 
only, without considering load issues (again, both Virtuoso and Neo4j are known for 
having good parallel performance). 

4 Discussion and Conclusions 

4.1 Related Work 

Populating a property graph database like Neo4j from RDF-encoded data has been gain-
ing interest in recent years, due to the opportunities offered by combining Semantic 
Web data standards, including the expressivity of ontologies, with the ease of use and 
efficiency of property graph technology [47]. A well-known tool to import RDF data 
into Neo4j has been implemented as a Neo4j plug-in [48]. While this defines a fixed 
‘natural’ mapping between RDF graphs and property graphs, we allow for arbitrary 
correspondences between the two. This might be a valuable advantage, if one wants to 
rename ontology-oriented entities on the RDF side (e.g., ‘continuant’) in favour of more 
domain-specific terminologies, or to simplify reified property patterns. Ad-hoc map-
ping from RDF to PG/Neo4j has been employed in other life science projects, including 
protein structure exploration [49], heterogeneous data integration [50,51] and ontology 
management [52]. [53] is an interesting alternative way to combine linked data and 
property graphs through query languages, which we are interested in exploring in fu-
ture. Works like [54,55] show the benefit of reducing the granularity of the RDF data 
models through mapping them onto more coarse-grained structures. 
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4.2 Discussion 

Our approach increases the opportunities for knowledge sharing by offering diversified 
interfaces and means to access the data, which are all based on a common model. In 
our recent work [29] we describe in detail how rdf2neo is part of a new infrastructure 
to support plant biology and agriculture-related data, and how this contributes to the 
realisation of FAIR sharing principles. To summarise this aspect, anchoring multiple 
formats and technologies to a common model helps with data Accessibility and Interop-
erability. Aligning such models to standard bio-ontologies contributes to data Interop-
erability. Supporting multiple technologies and query languages ease data Reuse and 
Accessibility. Adopting services like SPARQL endpoints and resolvable URIs helps 
with Findability. 

4.3 Conclusion 

Considering the analysis presented in this paper, adopting a hybrid, linked data and 
property graph approach significantly eases the collaboration and connections between 
different information types, enabling diversified access to knowledge networks based 
on common data models. By so doing, one can usefully combine the best of the linked 
data world (data modelling standards like ontologies, technologies aimed at data inte-
gration and interoperability) with those provided by the Property Graphs (simple query 
languages, particularly suitable for knowledge navigation use cases, data models and 
implementations optimised for graph traversal). While such hybrid architecture is not 
without disadvantages, e.g., having to maintain a more complex infrastructure and to 
have multiple IT skills, adopting it is recommendable in situations similar to our use 
case. Automating tasks like data conversions and alignment is a relevant activity in 
maintaining such a hybrid architecture and rdf2neo can contribute significantly to it. 
In future, we aim at improving the performance of rdf2neo, in particular by issuing 
fewer SPARQL queries during node/relation property fetching. Moreover, we plan to 
improve data interoperability by better integration with bioschemas [56]. Another ob-
jective we have is to extend our benchmarking to alternative triple stores and graph 
databases such as Gremlin [57], as well as a wider set of scientific data. 
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