
Multi-task Learning for Semantic Relations Discovery
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Abstract. Identifying the semantic relations that hold between words is of cru-
cial importance for reasoning purposes. Within this context, different methodolo-
gies have been proposed that either exclusively focus on a single lexical relation
(two-class problem) or learn specific classifiers capable of identifying multiple
semantic relations (multi-class problem). In this paper, we propose another way
to look at the problem that relies on the multi-task learning paradigm. Prelimi-
nary results based on simple learning strategies and state-of-the-art distributional
feature representations show that concurrent learning can lead to improvements.

Keywords: Co-Hyponymy · Hypernymy · Multi-task Learning · Neural Net-
works

1 Introduction

Semantic relations embody a large number of symmetric and asymmetric linguistic phe-
nomena such as co-hyponymy (bike ↔ scooter) or hypernymy (bike → tandem), and
their automatic identification is of crucial importance for reasoning purposes. Most ap-
proaches focus on modeling a single semantic relation and consist in deciding whether
a given relation r holds between a pair of words (x,y) or not (i.e. two-class problem).
Another research direction consists in dealing with multiple semantic relations and can
be defined as deciding which semantic relation ri (if any) holds between a pair of words
(x, y) (i.e. multi-class problem). In this paper, we propose another way to look at the
problem based on the idea that learning semantic relations concurrently may lead to
performance improvements when compared to a set of two-class classifiers. Within this
context, we propose to study both co-hyponymy and hypernymy based on the findings
of [12] that show that learning term embeddings that take into account co-hyponymy
similarity improves supervised hypernymy identification. As a consequence, we define
a multi-task learning strategy using a hard parameter sharing neural network model that
takes as input a learning word pair (x, y) encoded as the concatenation5 of both word
embeddings. The intuition behind our experiment is that if the tasks are correlated,
the neural network should improve its generalization ability by taking into account the
shared information. Preliminary results over the gold standard dataset ROOT9 [7] show
that classification improvements can be obtained.

5 Best configuration reported in [9] for standard non path-based supervised learning.
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2 Methodology and Setups

Multi-task learning architecture. Concurrent learning of tasks that have cognitive
similarities is often beneficial. We may hypothesize that recognizing related semantic
relations concurrently can benefit classification models across tasks. To test this hypoth-
esis, we propose to use a multi-task learning algorithm that relies on hard parameter
sharing. The idea is that the shared parameters can benefit the performance of all tasks
learned concurrently if the tasks are related. In particular, we propose an architecture
based on a feed-forward neural network to perform the classification step illustrated in
Figure 1. The input of the network is the concatenation of the word embeddings of the
word pairs followed by a series of non-linear hidden layers. Then, a number of soft-
max layers gives the network predictions. Here, a softmax layer corresponds to a task,
and concurrently learningM tasks requiresM separate output softmax layers. The effi-
ciency of hard parameter sharing architectures relies on the fact that the first layers that
are shared are tuned by back-propagating the classification errors of every task. That
way, the architecture uses the datasets of all tasks, instead of just one at a time.
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Fig. 1. Multi-task learning architecture.

Learning setup. To concurrently learn co-hyponymy and hypernymy as two classifi-
cation tasks, we implemented the multi-task architecture shown in Figure 1 using Keras
[2] and defined 2 fully-connected hidden layers (i.e. h1, h2, R = 2) of 50 neurons
each as well as 2 softmax layers. The word embeddings are initialized with the 300-
dimensional representations of ConceptNet [10]. The activation function of the hidden
layers is the sigmoid function and the weights of the layers are initialized with a uni-
form distribution scaled as described in [3]. As for the learning process, we use the
Root Mean Square Propagation (RMSprop) optimization method with learning rate set
to 0.001 and the default value for ρ = 0.9. For every task, we use the binary cross-
entropy loss function and the network is trained with batches of 32 examples6.

Dataset and lexical split. In order to perform our experiments, we use the ROOT9
dataset [7] that contains 9,600 word pairs. The word pairs are equally distributed among
three classes (hypernymy, co-hyponymy and random) and involve adjectives, nouns and
verbs. Here, we exclusively focus on nouns and keep all hypernyms, co-hyponyms and
random pairs that can be represented by ConceptNet embeddings. Following a classical
learning procedure, the dataset must be split into train, validation and test subtests. The

6 Code is available at https://github.com/balikasg/multitask-learning.



Multi-task Learning for Semantic Relations Discovery 3

standard procedure is random splitting. However, [4] point out that using distributional
representations in the context of supervised learning tends to perform lexical memo-
rization. In this case, the model mostly learns independent properties of single terms in
pairs. To overcome this situation and prevent the model from overfitting, [4] suggest to
split the train and test sets such that each one contains a distinct vocabulary. This proce-
dure is called lexical split. Here, we propose to apply lexical split as defined in [4]. So,
lexical repetition exists in the train and validation subsets, but the test set is exclusive
in terms of vocabulary. Note that all subsets are available for replicability7.

3 Results
For comparative evaluation, we implement two baseline systems: (1) Majority Base-
line and (2) Logistic Regression that has shown positive results in [8] over parts of
the ROOT9 dataset. As for evaluation metrics, we report two measures: (1) Accuracy
and (2) Macro-average F1 measure (MaF1). Accuracy captures the number of correct
predictions over the total predictions, while MaF1 evaluates how the model performs
across the different relations as it averages the F1 measures of each relation without
weighting the number of examples in each case. Preliminary results of our architecture
are illustrated in Table 1.

Co-hyponym vs. Random Hypernym vs. Random Average Results

Algorithm Accuracy MaF1 Accuracy MaF1 Accuracy MaF1

Majority Baseline 0.761 0.432 0.698 0.411 0.730 0.422
Logistic Regression 0.900 0.841 0.818 0.748 0.859 0.795

Multitask learning 0.895 0.849 0.841 0.803 0.868 0.826
Table 1. ROOT9. ConceptNet embeddings. Accuracy and Macro F1 scores.

The multi-task paradigm shows that improved accuracy and MaF1 scores can be
achieved on average reaching respectively values of 86.8% and 82.6%, thus showing
improvements of 0.9% and 3.1% over the best baseline (i.e. logistic regression). In this
case, the best improvements are obtained for the classification of hypernym pairs with
benefits of 2.3% in terms of accuracy and 5.5% in terms of MaF1, indeed suggest-
ing that there exists a learning link between hypernymy and co-hyponymy. In paral-
lel, the results for co-hyponymy classification are equivalent to a classical supervised
strategy using logistic regression. So, the results seem to put in advance the fact that
we can expect an improvement for hypernymy classification but not for co-hyponymy
in a multi-task environment, suggesting a positive influence of co-hyponymy learning
towards hypernymy but not the opposite. Note that these results seem to confirm the
findings of [12] for another learning scenario.

4 Conclusions and Future Directions
In this paper, we proposed to study the concurrent learning of co-hyponymy and hyper-
nymy using a hard parameter sharing multi-task architecture and state-of-the-art dis-
tributional input representations (concatenation of ConceptNet embeddings). Obtained

7 Data are available at https://github.com/balikasg/multitask-learning.
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results show that concurrent learning can lead to improvements, thus justifying our ini-
tial hypothesis. In particular, we have shown that hypernymy classification can gain
from concurrent learning of co-hyponymy. Based on these preliminary findings, a vast
amount of improvements can now be introduced into the framework to increase overall
performance. First, we aim at studying the interaction between more semantic relations
such as synonymy and meronymy. Then, with respect to the input features, we intend
to study the potential benefits from dedicated embeddings such as hypervec [6] and
dual embeddings [5]. Moreover, we deeply believe that the LSTM path-based features
introduced in [9] and some well-defined word pairs similarity measures [8] can lead to
classification improvements by complementing the information present in distributional
semantic spaces. Moreover, it is clear that more complex architectures such as convo-
lutional neural networks may improve the learning process as it is proposed in [1] for
similar tasks. Finally, we plan to make the original task more difficult by including the
detection of the direction of the asymmetric relations and adding noisy pairs as in [11].
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