
Detection of malicious VBA macros using
Machine Learning methods

Ed Aboud, Darragh O’Brien

Dublin City University

Abstract. Since their appearance in 1994 in the Concept virus, VBA
macros remain a preferred choice for malware authors. There are two
main attack techniques when it comes to document-based malware: ex-
ploits and VBA macros, with the latter applied in the vast majority of
threats. Although Microsoft have added multiple security features in an
attempt to protect users against malicious macros, such protections are
often easily circumvented by simple social engineering techniques. Anti-
virus companies can no longer rely on static signatures due to the rate
at which new macro malware is distributed, and thus are tasked with
employing a more proactive approach to threat detection. This paper
details the literature on machine learning methods for the detection of
VBA macro malware. Further, a machine learning system for the de-
tection of VBA macro malware is proposed and evaluated. A Random
Forest classifier achieves a true positive detection rate of 98.9875% with
a false positive detection rate of 1.07% over a set of 611 mixed (benign
and malicious) malware samples.

1 Introduction

The Microsoft Office suite allows users to leverage a powerful scripting engine
known as Visual Basic for Applications (VBA) in the files it creates. VBA grants
users a great deal of power by exposing the native Windows API [1]. This essen-
tially means that for the most part a macro-enabled document can perform all
the same tasks as a Portable Executable (PE), the native Windows executable
binary format. Originally, as with other malware types, malicious macros were
rarely deployed for financial gain [2]. More commonly they would take the form
of a file infector or virus, with the sole intention of spreading to as many ma-
chines as possible but without executing any particular payload [3]. With the
global shift in primary motivation for malware authors, however, this category
of threats has been almost completely replaced by one whose aim is financial
gain [4].
Up until the mid 2000s, users received little protection from Anti-virus software
and their Operating System. This was the case until the release of Office 2007,
which brought with it new security features to protect users from macro mal-
ware. In particular, Microsoft disabled the automatic execution of macros by
default [5], which thwarted threats that relied solely on the user opening the
document. In response to these security features, attackers must now focus on

2 Ed Aboud, Darragh O’Brien

the human element in the chain of compromise. To achieve execution of their
malware, the attacker’s victim must either take action to explicitly execute the
macro, or have an unsafe Office security configuration. Furthermore, the Office
suite has seen many of its discovered vulnerabilities exploited in the wild by
malware [6] [7] [8]. However, a recent study by Proofpoint showed that 99.7%
of documents used in attachment-based campaigns relied on social engineering
and macros [9], rather than exploits. Thus in this paper exploit-based threats
are excluded from further analysis.

Nowadays, macros typically serve as the initial step in the chain of compro-
mise whereby they download a secondary payload upon macro execution [10]. By
default, when a user opens a macro-enabled document, they are presented with
a warning, and notified of the dangers associated with macros. Also presented is
an Enable Content button along side the warning that when clicked, executes the
embedded macros. Attackers require their victims to click this button to execute
their malware, and to ensure this happens, many social engineering methods are
deployed at this stage. Common tricks include fake instructions present in the
document that falsely inform the user that the document was created in a previ-
ous version of Office, and to view the document they must click Enable Content.
Another approach is to display seemingly encrypted text with a note instructing
the user to click Enable Content in order to decrypt it.

Fig. 1. Social Engineering

If the user clicks the Enable Content button, code execution begins at one
of many possible entry points. Such entry points are event-triggered subroutines

Detection of malicious VBA macros using Machine Learning methods 3

that have the following definitions [11]:

AutoExec
When Word is started or a global template loaded

AutoNew
When a new document is created

AutoOpen/Document Open
When an existing document is opened

AutoClose/Document Close
When a document is closed

AutoExit
Upon exiting Word or unloading a global template

Fig. 2. Document Open

The above definitions define the user-triggered events that cause the execu-
tion of a corresponding subroutine in the macro source code. The vast majority
of macro malware contain at least one of such subroutine simply because they
may be triggered with minimal user interaction. Recently, malware authors have
been favouring the AutoClose subroutine due to the fact that some sandboxes
are not sufficiently sophisticated to determine that to detonate the malware’s
payload, the document must be opened and subsequently closed.

Another prevalent feature of macro malware is obfuscation. Unfortunately,
however since some commercial software developers employ obfuscation to pro-
tect their source code, the presence of obfuscation alone does prove malicious
intent. Rather, Office offers little protection to a developer who seeks to keep
their VBA application’s source code closed and developers thus resort to obfus-
cation. This paper builds on previous research by including social engineering
techniques as a feature in a machine learning classifier.

2 Motivation

In Symantec’s 2017 ISTR annual report on the current state of the threat land-
scape, it was found that macro-enabled documents and JavaScript downloaders

4 Ed Aboud, Darragh O’Brien

were the most commonly used approach to spreading malware via email [18]. Ac-
cording to the same report, macro-enabled documents were used in mass spam
campaigns to spread high profile malware such as Dridex and textitKotver. In
2015 it was estimated that the financial damage due to Dridex was over $40
million [22].

In 2015 Symantec published figures on the number of malicious email attach-
ments blocked by their endpoint products. The most common file extension was
.doc being blocked in 55.8% of emails with .xls in second place being blocked in
15.0% of emails [19].

Over the first half of 2017, Sophos reported in [20] that 68% of file types used
to deliver malware were Word documents and 16% Excel spreadsheets.

According to a 2015 Cisco blog evaluating the detection rate of VBA macros
by Anti-virus products, detection of malicious attachments at the time of email
delivery ranges from 0 to 35% with an average detection rate of 8% [21]. In
the same blog, it was also stated that malware download sites hosting malicious
macros remained alive in some cases for over 29 days.

Fig. 3. https://blogs.cisco.com/security/attackers-slipping-past-corporate-defenses-
with-macros-and-cloud-hosting

Considering that VBA macro malware has been around for over 20 years,
is responsible for the theft of millions of dollars annually and is not adequately
protected against by common security tools like Anti-virus, research into how to
better defend potential victims against VBA attacks is clearly warranted.

Detection of malicious VBA macros using Machine Learning methods 5

3 Related Work

Peer reviewed research on the topic of macro malware detection is limited. AL-
DOCX is a machine learning classifier and a structural feature extraction frame-
work implemented by Nisam et al in 2017 [12]. ALDOCX uses features extracted
solely from file paths in the ZIP archive structure used by the Office Open XML
variant of Office files (docx, xlsx, pptx). These file path based features are fed into
an online learning SVM classifier. Nissam et al reported a 93.6% true positive de-
tection rate with a 0.19% false positive rate. There were significant shortcomings
to this framework however, the first being that only OOXML-based office files
are supported and not legacy OLE files which remain the most common format
today [13]. Secondly, the training set ultimately favours simply classifying any
samples containing macros as malicious, as only 0.16% of their benign training
set contained macros and only ZIP file paths were used as features and while
these signify the existence of macros they reveal nothing of their contents.

Detection of various security vulnerabilities relating to format specification
abuse, VBA and other exploitation techniques are discussed by Lagadec in [14].
Lagadecs methods for detection rely on standalone detection tools and not ma-
chine learning, and hence fail to generalise to detect previously unseen malware
efficiently.

Rudd et al researched whether machine learning techniques that had been
previously successful in the classification of malicious PE files could be extended
to file types typically found in email attachments [13]. They collected 5 million
Office documents from Virustotal Intelligence and using both XGBoost and DNN
classifiers were able to achieve a detection rate of 99% using features such as
string length, byte entropy and N-gram histograms. They also showed that string
length features made the biggest contribution to their classifiers efficacy.

4 Background

Files created by the Microsoft Office suite typically use one of two formats [15].
Office versions prior to Office 2007 exclusively used a binary format known as
OLE to store all data needed to represent a document, spreadsheet, etc. OLE
files can be identified by their file extension, .doc, .xls, .ppt or by their first eight
bytes, D0CF11E0A1B11AE1. Internally, OLE uses a hierarchy of data streams
to store various components of the document.

In Fig.2 depicts the streams that make up a typical .doc document file. For
example, the WordDocument stream contains all of the document’s textual data.
Streams under the Macros directory are of most significance for malicious VBA
detection. Most streams found here contain metadata on the VBA project itself,
bar VBA PROJECT which contains the actual VBA source code. The source
code in this stream is compressed using the MS-OVBA algorithm [16] and there
exist many tools and libraries to aid in its decompression. Here, the oletools
library by declage [17] was used to extract the macro source code. Starting in
Office 2007, Microsoft introduced a new format known as Office Open XML [15].

6 Ed Aboud, Darragh O’Brien

Fig. 4. OLE Structure

The OOXML format is essentially a ZIP archive containing an internal hierarchy
of directories that in turn contain XML files used to both store both document
metadata and actual document contents. Fig. 3 presents the top level structure
of a .xlsx spreadsheet.

Fig. 5. Top level hierarchy

Of primary interest here is locating the VBA source code. This can be found
in file vbaProject.bin as depicted in Fig. 4

5 Method

The aim of this research is to develop a classifier to make a binary classification
on the behaviour of a macro-enabled document. The two possible classifications

Detection of malicious VBA macros using Machine Learning methods 7

Fig. 6. xl directory containing VBA project

are benign and malicious. Thus it was required to collect known benign and
malicious samples to construct a training set. Malicious samples can be collected
from various sources online. Here, malicious samples were exclusively collected
from the website, malshare.com. This website exposes an API to end-users and
maintains good classification of samples by YARA rules created by community
members. Once samples were downloaded, they were verified as malicious by
scanning with VirusTotal and any samples not deemed malicious by at least
three vendors were discarded. Subsequent manual inspection of each sample
was carried out to ensure its malicious nature. Collection of benign samples
was more challenging. To create a benign training set, various VBA tutorial
websites offering example macros were consulted. In addition, Google searches
for filetype:doc and filetype:xls with keywords such as VBA and macros, revealed
more samples. Again, this set was further validated by scanning each sample on
VirusTotal and excluding any sample that deemed malicious by any detector.
Subsequent manual inspection of each sample ensured it was indeed benign. From
each sample in the training set, all features are extracted and used to train a
classifier. Once trained, the model is serialized to a file on disk. This enables the
persistence of already trained models, and allows one to swap with ease between
classifier models.

6 Feature Selection

In previously published literature, features typically selected are ones that arise
purely from obfuscation. Thus, high detection rates can be achieved because the
vast majority of malicious macros are obfuscated. However such an approach
can lead to an increase in false positives. False positives are likely to occur in
benign macros where the author has taken measures to obfuscate the source
code. To handle such cases, a new approach is proposed here that includes the
presence of social engineering tricks as an additional feature as these will almost
never occur in a benign obfuscated macro. To automate the detection of such a
feature, it was necessary to first extract images embedded within the document.
As mentioned previously, such images contain text that aims to social engineer

8 Ed Aboud, Darragh O’Brien

the user into executing the macro. Generally speaking, commercial and open
source tools cannot extract embedded images the reason being that Microsoft
does not document how the Office suite, specifically Word and Excel, process
embedded images. For Powerpoint files, images are stored within a Pictures
stream, however this is not the case for Word and Excel.

As a result, an image extractor that does not rely on parsing the OLE header
was implemented. Rather, it searches the OLE binary for potential image magic
numbers. Once an image magic number is found within the OLE binary, the
image header is parsed and the entire image extracted. Next, images are passed
through the tesseract Optical Character Recognition library. Text is thus ex-
tracted from from these embedded images. A binary feature codes the presence
of common phrases found in social engineering images, such as Enable Content
and Previous Version. For features that code characteristics of the source code, a
small custom VBA parser was implemented. This facilitated the simple incorpo-
ration of new source code-related features. Features found to achieve a maximum
detection rate after hyper-parameter tuning are documented below:

Average Variable Assignment Length: It was found that many obfuscated
macros declared abnormally long string variables. This was determined by com-
paring the average length for both benign and malicious sets. To capture this
feature, the average length of string variables in the VBA source was computed.

Count of Integer Variables: Another characteristic common to the mali-
cious macro set was that they defined more integer variables than the benign
set. To capture this feature, the count of integer variables in the macro source
code divided by the length of the source code was computed.

Count of String Variables: The same finding held for string as for inte-
ger variables. To capture this feature, the count of string variables in the macro
source code divided by the length of the source code was computed.

Macro Keywords: This is a binary feature that encodes the presence of certain
keywords that were found to be significantly more prevalent amongst the mali-
cious set. These keywords related to event-based subroutines described earlier,
namely AutoOpen, AutoClose, DocumentOpen and DocumentClose.

Highest Number of Consecutive Mathematical Operations: A subset of
the malicious sample set employed anti-analysis techniques by declaring many
variables in the following way:

Declaring variables in this fashion is characteristic of obfuscated scripts. This
feature was captured by finding the highest number of consecutive mathemati-
cal operations carried out across all variables declared in the script. This integer
value was then included in the feature vector.

Detection of malicious VBA macros using Machine Learning methods 9

Fig. 7. Consecutive mathematical operations

Casing Ratio in Variable Declarations: Typically a programmer adopts
a naming convention when it comes to variables. They may use lower-case ex-
clusively, upper-case or camel case. In any case, one would expect the ratio of
upper-case to lower-case characters in variable names to be either close to zero
or significantly greater than one. To capture this feature, the latter ratio is com-
puted for each variable in the script and averaged over the whole script.

Fig. 8. Mixed Casing

Count of Variables: Obfuscated scripts tend to declare many more distinct
variables in an effort to make analysis more difficult. To capture this feature,
the number of distinct variable declarations in the script divided by the length
of the script is computed.

Shannon Entropy: Obfuscated scripts tend to be less readable, using ran-
dom, non-readable words for variable declarations and subroutine names. As a
result, they tend to have higher entropy than non-obfuscated scripts. This value
was added to the feature vector.

10 Ed Aboud, Darragh O’Brien

7 Classification

For each training sample, an N dimensional feature vector is created where N is
the number of features used. Feature vectors are represented in a numpy array
and passed to a classifier implemented by the scikit-learn Python library. Five
different classifiers from scikit-learn were investigated: KNeighborsClassifier, De-
cisionTree, RandomForest and GaussianNB. Each classifier was trained over the
training set consisting of 200 known benign samples and 200 known malicious
samples. To improve classifier performance, hyper-parameters were first tuned
using a randomised grid search using 10-fold cross validation. This narrowed
down the ranges for which hyper-parameters were most performant. Next, an-
other grid search was performed using 10-fold cross validation but defining more
narrow parameter ranges that were close to those determined most effective by
the randomised search. The sklearn.model selection.RandomizedSearchCV and
sklearn.model selection.GridSearchCV classes were applied for this purpose.
Once the most effective hyper-parameters had been determined for each clas-
sifier, the classifiers’ predictive capabilities were evaluated using samples from
a separate test set. The test set consisted of 528 known malicious samples and
83 known benign samples. The samples in the test set were not present in the
training set. Similar to Rudd et al [13], care was taken to ensure that all samples
present in the malicious test set were newer than the newest sample in the mali-
cious training set. The aim here is to evaluate the classifiers by using deployment
performance metric. The latter captures the effectiveness of the classifier after
deployment in terms of classifying new and previously unseen malware. This is
important because of the evolving nature of obfuscated malware. For example,
in any given week a malware campaign will favour one packer/obfuscator, but
once anti-virus signatures catch-up, a switch to a new packer/obfuscator evades
detection. To evaluate their performance, the True Positive Rate (TPR) was
defined to be the percentage of the test set that was classified correctly and
the False Positive Rate to be the percentage of the test set that was classified
incorrectly.

Hyper-parameters, TPR/FPR are shown below. No hyper-parameter tuning
was required for GaussianNB as the classifier doesn’t accept parameters.

KNeighbors DecisionTree RandomForest GaussianNB

n neighbors = 20 min samples split = 6 min samples leaf = 2

weights = ’distance’ criterion = ’entropy’ n estimators = 800

algorithm = ’ball tree’ max depth = 100 max features = ’sqrt’

{max depth = 50

Detection of malicious VBA macros using Machine Learning methods 11

The table below documents my results for TPR and FPR against my test set
with the RandomForest classifier being the best performer. The time row shows
the average time taken to train the classifier on an i7-4790K CPU @ 4.00GHz.

RandomForest KNeighbors DecisionTree GaussianNB

TPR 98.9875% 97.527% 98.225% 97.02%
FPR 1.07% 2.46% 1.768% 2.97%
time 7m 34s 6m51s 6m51s 6m59

8 Conclusion

Despite the relatively small training set, the observed performance is promising
and on a par with other studies. This research suggests that machine learning
may provide viable approaches to detecting VBA macro malware. Furthermore,
in theory an approach such as that described in this paper can be easily ported
to classify other prevalent script-based threats such as JavaScript, VBScript,
Powershell and Windows batch files.

In terms of deployment, this approach could serve as either a host-based agent
where document files are scanned prior to opening in Office, or a network-based
agent where all document files on the network are inspected prior to reaching
their destination. Detection logic could be updated by drawing the persistent
model files from a remote location, analogous to how anti-virus products update
their signatures. One challenge faced throughout this research was acquiring
benign samples. Unlike malicious samples, there were no online resources iden-
tified that hosted verifiably benign macro-enabled documents. This significantly
restricted training set size, and as a result impacted overall classifier perfor-
mance. In an ideal scenario, access to Google’s VirusTotal service would enable
the ready download of benign samples. However, this service comes with a major
annual price tag.

Future work on will be focus on implementing an online learning based solu-
tion. Such an approach, would not require re-training against the entire training
set each time a new sample is added. This would make the software more suitable
for deployment in a corporate network environment, with the ultimate intention
of it consuming all Office samples traversing the network, and updating its clas-
sification model as it sees them.

References

1. Maria Wenzel, Matt Hoffman et al Calling Windows APIs (Visual Basic).
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-
interop/walkthrough-calling-windows-apis

12 Ed Aboud, Darragh O’Brien

2. Zhengchuan Xu, Qing Hu, Chenghong Zhang Why computer talents become com-
puter hackers Communications of the ACM. Volume 56 Issue 4, April 2013. Pages
64-74

3. Vesselin Bontchev Possible macro virus attacks and how to prevent them Computers
& Security. Volume 15, Issue 7, 1996, Pages 595-626

4. Sara L.N. RaId, Jens M. Pederse An Updated Taxonomy for Characterizing Hack-
ers According to Their Threat Properties 2012 14th International Conference on
Advanced Communication Technology (ICACT)

5. Macro Security for Microsoft Office https://www.ncsc.gov.uk/guidance/macro-
security-microsoft-office

6. Haifei Li RTF Attack Takes Advantage of Multiple Exploits
https://securingtomorrow.mcafee.com/mcafee-labs/rtf-attack-takes-advantage-
of-multiple-exploits/

7. Graham Chantry CVE-2012-0158: Anatomy of a prolific exploit
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/CVE-
2012-0158-An-Anatomy-of-a-Prolific-Exploit.PDF

8. Genwei Jiang, Rahul Mohandas, Jonathan Leathery, Alex Berry, Lennard
Galang CVE-2017-0199: In the Wild Attacks Leveraging HTA Handler
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-
handler.html

9. Evan Gaustad Applied Machine Learning: Defeating Modern Malicious Docu-
ments https://www.rsaconference.com/writable/presentations/file upload/ht-w02-
applied-machine-learning-defeating-modern-malicious-documents.pdf

10. Gabor Szappanos VBA is not dead! https://www.virusbulletin.com/virusbulletin/2014/07/vba-
not-dead

11. John Austin Auto Macros https://msdn.microsoft.com/en-us/vba/word-
vba/articles/auto-macros

12. Nir Nissim, Aviad Cohen, Yuval Elovici ALDOCX: Detection of Unknown Mali-
cious Microsoft Office Documents Using Designated Active Learning Methods Based
on New Structural Feature Extraction Methodology IEEE Transactions on Informa-
tion Forensics and Security vol. 12, no. 3, pp. 631-646, March 2017.

13. Ethan M. Rudd, Richard Harang, and Joshua Saxe MEADE: Towards a Malicious
Email Attachment Detection Engine arXiv preprint arXiv:1804.08162, 2018

14. Philippe Lagadec OpenDocument and Open XML security (OpenOffice.org and MS
Office 2007) Journal in Computer Virology May 2008, Volume 4, Issue 2, pp 115125

15. Zhangjie Fu, Xingming Sun, and Jie Xi Digital Forensics of Microsoft Office
20072013 Documents to Prevent Covert Communication JOURNAL OF COMMU-
NICATIONS AND NETWORKS, VOL. 17, NO. 5, OCTOBER 2015 pp 525-533

16. https://msdn.microsoft.com/en-us/library/dd923471(v=office.12).aspx
17. https://github.com/decalage2/oletools/wiki
18. https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-

en.pdf
19. https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-

government-en.pdf
20. https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-a-

sophoslabs-investigation-into-delivering-malware-via-vba/
21. https://blogs.cisco.com/security/attackers-slipping-past-corporate-defenses-with-

macros-and-cloud-hosting
22. https://securelist.com/dridex-a-history-of-evolution/78531/

