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Abstract. The synthesized two-dimensional mathematical models of non-iso-

thermal humidity transfer in media with fractal structure taking into account the 

effects of memory and spatial correlation. Built explicit and implicit difference 

schemes for equations related heat-mass transfer in two-dimensional domain with 

boundary conditions of the third kind. These algorithmic aspects for the realiza-

tion of the obtained difference equations using method predictor-corrector and 

analyzed the conditions of stability of difference schemes. 
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1 Introduction 

Actuality of the topic. The development of the theory and methods of mathematical or 

computer modeling of processes and systems in various fields of human activity has 

always been based on the use of new ideas, approaches from the field of analysis, ap-

plied and computational mathematics. One of the most important tasks that arises dur-

ing modeling is the adequacy of a mathematical model for an object or phenomenon 

from the real world. 

Dynamic systems, as an object of modeling, have traditionally been studied using 

integro-differential equations in integer and fractional derivatives. Classical analysis 

assumes that integrals and derivatives have integer orders. Nevertheless, it has already 

been discovered by observing that the behavior of a number of objects and processes 

does not fully correspond to its mathematical models (with integrals and derivatives of 

integer orders), that is, in some models the question of adequacy is raised. Accordingly, 

models and their solutions for the dynamical systems with integrals and derivatives of 

real orders began to be developed. The notion of an integral and derivative of non-

integer orders lie at the basis of the integral and derivative of fractional orders. 



 

 

At the moment, the fractional calculus is at a stage of great development, in the the-

oretical and practical application. One of the main questions faced by scientists is the 

interpretation and application of integration and differentiation of fractional orders for 

different models. For today it's hard to say what an integral or derivative of a fractional 

order is in terms of geometric and physical interpretations. Nevertheless, this section of 

mathematical analysis has become a tool for mathematical modeling of complex dy-

namic processes, in ordinary and fractal environments, and allows us solve various 

problems. 

Here is an incomplete list of tasks in which the fractional derivatives are effective: 

automatic control; signal processing; physics and electronics; biology and medicine; 

economy and finance; classical mechanics; hydrodynamics (movement of the body in 

a viscous liquid); thermal conductivity (dynamics of heat flows); diffusion processes; 

dynamics of turbulent environment; visco-elasticity (rheology of polymers); static op-

tics; radio-physics; radio engineering; dynamic chaos; and other… 

However, despite the practical application of fractals and their analysis, there are 

still many unresolved problems and problems associated with the geometric, physical 

and probabilistic interpretations of the fractional derivatives apparatus and integrals. 

2 Analysis of mathematical apparatus for differentiation of 

fractional order 

Fractal calculus has involved a lot of famous scientists after Lopital and Leibniz. Fou-

rier, Euler, Laplace - the most famous among those who were engaged in this mathe-

matical apparatus. Many of them introduced their own notation and methodology that 

would match the concept of integration and differentiation of fractional order. 

Typically, for the description of non-stationary processes, the integration and differ-

entiation operators are used, which determine the overlay of certain conditions on pro-

cesses and generalize their properties. Today, in many branches of science, there are 

new structures for which the use of ordinary differential equations is insufficient. In-

stead, they could be adequately described with the aid of the mathematical apparatus of 

integration and differentiation of the fractional order. A fractal calculus is called the 

domain of mathematical analysis, where the operators of differentiation and integration 

of any real order are studied [3, 6, 8, 9, 10, 12, 19]. In the last few decades there was 

an urgent need to use this apparatus in various fields of science, such as: classical and 

quantum physics, field theory, solid state physics, fluid dynamics, aerodynamics, sto-

chastic analysis, image processing [1, 4, 5, 11, 13, 20]. 

Equations containing integrating or differentiating operators of fractional order are 

widely used to describe the behavior or state of a real physical environment or process. 

There are many phenomena and processes that have a characteristic fractal or memory 

effect. The mathematical apparatus of integration and differentiation of fractional order 

is the best method for constructing models of such systems [18, 21]. The memory mech-

anism may be different depending on the type of process, by the way the phenomeno-



 

logical description of many processes with this property may have one basis. A frac-

tional calculation in the theory of such systems becomes irreplaceable, which could be 

compared with the classical analysis in continuum mechanics [2, 7]. 

Recently, operators of integration and differentiation of fractional order in the theory 

of visco-elasticity are widely used [8, 9, 14, 16]. The use of operator data to describe 

the relations between stresses and deformations made it possible to take into account 

the existence of irreversible phenomena due to the rheological properties of the material 

[8, 16, 19]. Research of the stress-strain state in visco-elastic bodies play an important 

role in estimation of their strength and reliability during technological processing. 

An analysis of scientific sources suggests that the definition of derivatives of frac-

tional order is based mainly on three approaches. The first is based on the generalization 

of the well-known Cauchy formula, which allows us to construct a multiple integral of 

an integer order to a single [8, 9, 19]. The second approach is developed in the works 

[6] and generalized in [7, 20] about the definition of a fractional derivative by the 

boundary of a finite-difference relation. There are also known a number of generaliza-

tions and modifications of such approaches. The main difference of fractional deriva-

tives from integers is their non-locality, that is, the dependence of the results of differ-

entiation on the values of functions at all points of a certain segment or numerical line, 

and not on the values of functions at points from the small circle of a given point - as 

in the case of ordinary differentiation. Also known studies on the generalization of frac-

tional differentiation operators, in particular [8, 21], the fractional order is described by 

the function of time, and in [21] by a random variable. 

There are various options for introducing integration and differentiation operations 

of fractional order, in particular Riemann-Liouville, Kaputo, Grunwald-Letnikov's ap-

proaches, and their various modifications [8, 9, 19]. On certain classes of functions, 

these operations lead to identical results. As an example, we can give a fractional inte-

gration and differentiation of a completely integrable function on a finite segment of 

Riemann-Liouville, which coincides with the corresponding operations for Grunwald-

Letnikov [20]. Let's consider more detailed modifications of these operators. 

Studies are devoted to the construction of mathematical models and software for 

physical and mechanical fields in capillary-porous materials with fractal structure. Such 

fractional order models describe the evolution of physical systems with residual 

memory and the very similarity of a fractal structure that occupy an intermediate posi-

tion between Markov systems and systems that are characterized by complete memory.  

In particular, the fractional indicator indicates the share of system states that are stored 

throughout the process of its operation 

 

3 Mathematical model for transferring heat and humidity in 

environments with fractal structure 

The mathematical model for heat and humidity transfer in an environment with a fractal 

structure is described by a system of differential equations in partial derivatives with a 

fractional order over time t and a spatial coordinate x. 
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where      , , 0, 0,x G G t l    ; 

T;U - unknown functions, T - temperature, U - humidity, c - specific heat capacity, ρ - 

density, λ - coefficient of thermal conductivity, ε - coefficient of phase transition, ρ0 - 

basic function, r - specific heat of steam generation, a - coefficient of conductivity, δ -

thermo gradient coefficient, Tc - temperature of the environment, Up - relative humidity 

of the external environment, σ - humidity transfer coefficient, ω - heat transfer coeffi-

cient,  10   - fractional order of derivative over the time,  21   ,  10    - 

fractional order of derivative over the spatial coordinates.  

 

4 Numerical algorithm 

Let's make space-time discretization in the domain D: 
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Using the Riemann-Liouville formula: 
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We can write difference approximation of fractional derivative of order α  10 

, on line segment ],[ 1kk  : 
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where    - Gamma function. 

To determine the fractional derivative of order from one to two  21   , we can 

use the Grunwald-Letnikov formula: 

 
 

 
 

   
 

0 0

11
1 1 ,lim

1 1

h
j

h j

f
f x j

x h j j




 

 



 
 
 

 

  
   

     
  (10) 
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  ,  h  -integer part of a number x. 

Then the difference approximation of the fractional derivative β for the coordinate x 

will look like: 
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Taking into account (9), (11) we will obtain an explicit difference scheme for the 

numerical implementation of the system of differential equations (1),(2): 
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In the case when 1  , we obtain an explicit finite-difference scheme, and when 

0   - an implicit scheme 

with discrete initial conditions: 
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and discrete boundary conditions: 
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To find the numerical solutions of the resulting system of difference equations, use 

the predictor-correction method. In the role of the predictor, we will use an implicit 

difference scheme (12), (13) with the step ht/2, and in the role of the corrector will be 

an explicit difference scheme (12), (13). 
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Equation (17) will be rewritten in the form for convenience: 
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The boundary conditions (15), (16) corresponding to equation (17) are written as 

follows: 
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We write in the matrix form equations (19) - (21): 
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The components ija , Nji ,1,   of the matrix A  are determined by expressions: 

 

 

 

 

 

 

 

 

 

 

Similarly, we write in the matrix form the equation (18) and the boundary conditions 

(15), (16), which correspond to it: 
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Substitute (22) into (23) and obtain a system of equations that are solved relative to 

the function T: 
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1 2 1, ,..., , , ( 0,1,..., 1)
k k k k

N NT T T T k K
   

   , 

looking for from (22) the set of solutions 
1 1 1 1
2 2 2 2

1 2 1, ,..., , , ( 0,1,..., 1)
k k k k

N NU U U U k K
   

    

For solutions on the whole interval  , use concealer, which is implemented in an 

explicit finite difference scheme: 
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

 



 
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     
 , (25) 
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1 1
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h h  

 

 


 

   

 


 

  
  . (26) 

Thus, from (26) find the great number of decision -  1 : 0, 1; 1,k

nU k K n N    , 

and from (25) will get the great number of decision -  1 : 0, 1; 1,k

nT k K n N    . 

Let's introduce the main steps of the algorithm for the implementation of the obtained 

difference equations by the method of predictor-proofreader: 

1. On a sentinel step 0k  carry out realization of cycles for Nn ,...,1  from initial 

conditions (14) will find the value of functions 
0 0,n nT U . 

2. For a condition Kk 0  carry out next operations: 

2.1. REALIZATION OF THE PREDICTOR METHOD. 

2.1.1. For Nn ,...,1 ;  carry out cycles for 1
2

k k  ; 



 

2.1.2. Determined from the matrix equation (24) the value 
1

2
k

nT


; 

2.1.3. From the matrix equation (22) the value 
1

2
k

nU


; 

2.2. REALIZATION OF METHOD CORRECTOR. 

2.2.1. For 1 kk ; 1,...,2  Nn  in cycles we find the value 
1k

nT 
 and 

1k

nU 
 of 

equations (25) and (26); 

2.2.2. Wanted values 1

1

kT  , 1k

NT  , 1

1

kU  ; 1k

NU   we find from the boundary conditions 

(15), (16). 

3. Increasing the time step to 1 kk  and for the condition Kk 0  carry out 

realization of sub-items 2.1 - 2.2, that is, the method of predictor-corrector. In the op-

posite case, that is, if the condition is not fulfilled Kk 0 , complete the implemen-

tation of the calculations. 

 

The conditions of stability. To determine the stability conditions of the obtained 

difference equations of the connected heat-and-mass transfer, the method of conditional 

assignment of some known functions of the system is used, according to which the 

following relation is found: 

 
 

   
31 2

1 2

1

2 2

СС С
t

h h



 



  

 
   

   
 (27) 

where     1
03222111 1,;,;,


  rcCaCaС . 

Supposing that fractal parameters ,   take integer values, an analysis and com-

parison have been made, according to which the obtained stability condition (21) coin-

cides with the condition  of stability for  classical equations of thermal  conductivity. 

 

5 Software for implementation of mathematical models 

For numerical solving of discretized model it was created a programming software, by 

using Python programming language. When the program loads you can see interface 

Fig. 1, where you can set your data which is needed by model,  and run by pressing 

calculate button. It automatically sets all data inside the code, calculate the results of 

temperature and humidity which are unknown and draw graphics. After that, you can 

take cutting of the graphics over t or x variable and see 2D cutted graphics from 3D. 

 



 

 

 

Fig. 1. Interface of the program. 

6 Software development for implementation of mathematical 

models and analysis of simulation results 

The coefficients included in the mathematical models for non-isothermal humidity 

transfer in materials with a fractal structure are considered to be temperature- and hu-

midity-dependent. They include factors such as thermal conductivity, heat transfer, wa-

ter exchange, conductivity of humidity, thermo-gravity coefficient, equilibrium humid-

ity and density. 

For the numerical experiment,  pine wood has been chosen  with the following  val-

ues of the physical parameters of the material and the parameters of the environment. 

 basic density ρ0 = 530 kg/m3 

 the initial value of humidity content u0 = 0.4 kg/kg 

 initial temperature T0 = 20 oC 

 temperature of the environment Tc = 70 0C 

 relative humidity φ = 60% 

We will show the dynamics of temperature and humidity of the numerical experi-

ment of a one-dimensional mathematical model of heat and mass transfer processes 

taking into account the fractal structure (Fig. 2-3) for a biophysical material with a con-

ditional density ρ0 = 360 kg/m3 for boundary conditions of the third kind and heteroge-

neous initial conditions, namely (    20, 4 20 4.7T x x x   ). 



 

 

Fig. 2. Temperature change in the material, taking into account fractal parameters and without 

their consideration 

The temperature of environment 
ct  changes in relation to time on such law - 

  80 1 exp 4ct t    . The fractal parameters of the mathematical model were 

chosen as follows: 0.3, 1.9, 0,1     . Equilibrium moisture content, depending 

on time t, is described by the formula: 3 20.0003 0.0063 0.0193 0.6p t tU t    , the in-

itial moisture content is equal to the moisture content at the border of satiation of cel-

lular walls of material. Taking into account of fractal structure gives an opportunity to 

extend the great number of realization of mathematical model of unisothermal moisture 

transfer by the choice of fractional indexes, and also to take into account the evolution 

of temperature and humidity during all time of flowing of physical processes. 

 

Fig. 3. Changing the moisture content in the material, taking into account fractal parameters and 

without their consideration 



 

 

Conclusions 

Synthesized mathematical models of transferring heat and humidity in environments 

with fractal structure, taking into account non-localities in time and spatial correlation. 

Finite-difference approximations of the system of differential equations of fractional 

order with boundary conditions of the third kind are obtained. 

The explicit and implicit difference schemes for the realization of a mathematical 

model of heat and humidity transferring with derivatives of fractional order are devel-

oped. 

The algorithmic aspects of their implementation are based on the use of the predic-

tor-corrector method. 

The synthesized one-dimensional mathematical models of non-isothermal humidity 

transfer in media with fractal structure taking into account the effects of memory and 

spatial correlation. Builted explicit and implicit difference schemes for equations re-

lated heat-mass transfer with boundary conditions of the third kind. These algorithmic 

aspects for the realization of the obtained difference equations was using method pre-

dictor-corrector. 
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