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Abstract

English. In this paper we present a work
aimed at testing the most advanced, state-
of-the-art syntactic parsers based on deep
neural networks (DNN) on Italian. We
made a set of experiments by using the
Universal Dependencies benchmarks and
propose a new solution based on ensem-
ble systems obtaining very good perfor-
mances.

Italiano. In questo contributo presentia-
mo alcuni esperimenti volti a verificare
le prestazioni dei più avanzati parser
sintattici sull’italiano utilizzando i tree-
bank disponibili nell’ambito delle Univer-
sal Dependencies. Proponiamo inoltre un
nuovo sistema basato sull’ensemble par-
sing che ha mostrato ottime prestazioni.

1 Introduction

Syntactic parsing of morphologically rich lan-
guages like Italian often poses a number of hard
challenges. Various works applied different kinds
of freely available parsers on Italian training them
using different resources and different methods for
comparing their results (Lavelli, 2014; Alicante
et al., 2015; Lavelli, 2016) and gather a clear pic-
ture of the syntactic parsing task performances for
the Italian language. In this direction seems rel-
evant to cite the EVALITA1 periodic campaigns
for the evaluation of constituency and dependency
parsers devoted to the syntactic analysis of Italian
(Bosco and Mazzei, 2011; Bosco et al., 2014).

Other studies regarding the syntactic parsing
of Italian tried to enhance the parsing perfor-
mances by building some kind of ensemble sys-
tems (Lavelli, 2013; Mazzei, 2015).

1http://www.evalita.it

By looking at the cited papers we can observe
that they evaluated the state-of-the-art parsers be-
fore the “neural net revolution” not including the
last improvements proposed by new research stud-
ies.

The goal of this paper is twofold: first, we
would like to test the effectiveness of parsers based
on the newly-proposed technologies, mainly deep
neural networks, on Italian, and, second, we would
like to propose an ensemble system able to further
improve the neural parsers performances when
parsing Italian texts.

2 The Neural Parsers

We considered nine state of the art parsers repre-
senting a wide range of contemporary approaches
to dependency parsing whose architectures are
based on neural network models (see Table 1). We
set-up each parser using the data from the Italian
Universal Dependencies (Nivre et al., 2016) tree-
bank, UD Italian 2.1 (general texts) and UD Italian
PoSTWITA 2.2 (tweets). For all parsers, we used
the default settings for training, following the rec-
ommendation of the developers.

In Chen and Manning (2014) dense features are
used to learn representations of words, tags and
labels using a neural network classifier in order
to take parsing decisions within a transition-based
greedy model. To address some limitations, in An-
dor et al. (2016) the authors augmented the parser
model with a beam search and a conditional ran-
dom field loss objective. The work of Balles-
teros et al. (2015) extends the parser defined in
Dyer et al. (2015) introducing character-level rep-
resentation of words using bidirectional LSTMs
to improve the performance of stack-LSTM model
which learn representations of the parser state.
In Kiperwasser and Goldberg (2016) the bidirec-
tional LSTMs recurrent output vector for each
word is concatenated with any possible heads re-
current vector, and the result is used as input to a



multi-layer perceptron (MLP) network that scores
each resulting edge. Cheng et al. (2016) pro-
pose a bidirectional attention model which uses
two additional unidirectional RNN, called left-
right and right-left query component. Based on
Kiperwasser and Goldberg (2016) and Cheng et al.
(2016) model, in Dozat and Manning (2017) a
biaffine attention mechanism is used, instead of
traditional MLP-based attention. The model pro-
posed in Nguyen et al. (2017) train a neural net-
work model that learn jointly POS tagging and
graph-based dependency parsing. The model uses
a bidirectional LSTM to learn POS tagging and the
Kiperwasser and Goldberg (2016) approach for
dependency parsing. Shi et al. (2017a,b) described
a parser that combines three parsing paradigms us-
ing a dynamic programming approach.

Parser Ref.-Abbreviation Method Parsing
(Chen and Manning, 2014) - Tb: a-s Greedy

CM14
(Ballesteros et al., 2015) - Tb: a-s Be-se

BA15
(Kiperwasser and Goldberg, 2016)- Tb: a-h Greedy

KG16:T
(Kiperwasser and Goldberg, 2016)- Gb: a-f Eisner

KG16:G
(Andor et al., 2016) - Tb: a-s Beam-S

AN16
(Cheng et al., 2016) - Gb: a-f cle

CH16
(Dozat and Manning, 2017) - Gb: a-f cle

DM17
(Shi et al., 2017a,b)- Tb: a-h./ Greedy

SH17 -eager
Gb: a-f Eisner

(Nguyen et al., 2017) - Gb: a-f Eisner
NG17

Table 1: All the neural parsers considered in
this study with their fundamental features as well
as their abbreviations used throughout the paper.
In this table “Tb/Gb” means “Transition/Graph-
based”, “Beam-S” means “Beam-search” and “a-
s/h/f” means “arc-standard/hybrid/factored”.

We trained, validated and tested the nine con-
sidered parsers, as well as all the proposed exten-
sions, by considering three different setups:

• setup0: only the UD Italian 2.1 dataset;

• setup1: only the UD Italian PoSTWITA 2.2
dataset;

• setup2: UD Italian 2.1 dataset joined with the
UD Italian PoSTWITA 2.2 dataset (train and
validation sets) keeping the test set of PoST-
WITA 2.2;

After the influential paper from Reimers and
Gurevych (2017) it is clear to the community that
reporting a single score for each DNN training ses-
sion could be heavily affected by the system ini-
tialisation point and we should instead report the
mean and standard deviation of various runs with
the same setting in order to get a more accurate
picture of the real systems performances and make
more reliable comparisons between them.

Table 2 shows the parsers performances on
the test set for the three setups described above
executing the training/validation/test cycle for 5
times. In any setup the DM17 parser exhibits the
best performances, notably very high for general
Italian. As we can expect, the performances on
setup1 were much lower than that for setup0 due
to the intrinsic difficulties of parsing tweets and to
the scarcity of annotated tweets for training. Join-
ing the two datasets in the setup2 allowed to get
a relevant gain in parsing tweets even if we added
out-of-domain data. For these reasons, for all the
following experiments, we abandoned the setup1
because it seemed more relevant to use the joined
data (setup2) and compare them to setup0.

3 An Ensemble of Neural Parsers

The DEPENDABLE tool in Choi et al. (2015) re-
ports ensemble upper bound performance assum-
ing that, given the parsers outputs, the best tree
can be identified by an oracle “MACRO” (MA), or
that the best arc can be identified by another oracle
“MICRO” (mi). Table 3 shows that, by applying
these oracles, we have plenty of space for improv-
ing the performances by building some kind of en-
semble system able to cleverly choose the correct
information from the different parsers outputs and
combine them improving the final solution. This
observation motivates our proposal.

To combine the parser outputs we used the fol-
lowing ensemble schemas:

• Voting: Each parser contributes by assigning
a vote on every dependency edge as described
in Zeman and Žabokrtský (2005). With the
majority approach the dependency tree could
be ill-formed, in this case using the switching
approach the tree is replaced with the output
of the first parser.

• Reparsing: As described in Sagae and Lavie
(2006) together with Hall et al. (2007) a MST
algorithm is used to reparse a graph where



setup0
Valid. Ita Test Ita

UAS LAS UAS LAS
CM14 88.20/0.18 85.46/0.14 89.33/0.17 86.85/0.22
BA15 91.15/0.11 88.55/0.23 91.57/0.38 89.15/0.33
KG16:T 91.17/0.29 88.42/0.24 91.21/0.33 88.72/0.24
KG16:G 91.85/0.27 89.23/0.31 92.04/0.18 89.65/0.10
AN16 85.52/0.34 77.67/0.30 87.70/0.31 79.48/0.24
CH16 92.42/0.00 89.60/0.00 92.82/0.00 90.26/0.00
DM17 93.37/0.27 91.37/0.24 93.72/0.14 91.84/0.18
SH17 89.67/0.24 85.05/0.24 89.89/0.29 84.55/0.30
NG17 90.37/0.12 87.19/0.21 90.67/0.15 87.58/0.11

setup1
Valid. PoSTW Test PoSTW

UAS LAS UAS LAS
CM14 81.03/0.17 75.24/0.30 81.50/0.28 76.07/0.17
BA15 83.44/0.20 77.70/0.25 84.06/0.38 78.64/0.44
KG16:T 77.38/0.14 68.81/0.25 77.41/0.43 69.13/0.43
KG16:G 78.81/0.23 70.14/0.33 78.78/0.44 70.52/0.51
AN16 77.74/0.25 66.63/0.16 77.78/0.33 67.21/0.30
CH16 84.78/0.00 78.51/0.00 86.12/0.00 79.89/0.00
DM17 85.01/0.16 78.80/0.09 86.26/0.16 80.40/0.19
SH17 80.52/0.18 73.71/0.14 81.11/0.29 74.53/0.26
NG17 82.02/0.11 75.20/0.24 82.74/0.39 76.22/0.41

setup2
Valid. Ita+PoSTW Test PoSTW
UAS LAS UAS LAS

CM14 85.52/0.13 81.51/0.05 82.62/0.24 77.45/0.23
BA15 87.85/0.13 83.80/0.12 85.15/0.29 80.12/0.27
KG16:T 83.89/0.23 77.77/0.26 80.47/0.36 72.92/0.46
KG16:G 84.70/0.14 78.41/0.14 81.41/0.37 73.49/0.19
AN16 82.95/0.33 73.46/0.37 79.81/0.27 69.19/0.19
CH16 89.16/0.00 84.56/0.00 86.85/0.00 80.93/0.00
DM17 89.72/0.10 85.85/0.13 87.22/0.24 81.65/0.21
SH17 85.85/0.36 80.00/0.39 83.12/0.50 76.38/0.38
NG17 86.81/0.04 82.13/0.09 84.09/0.07 78.02/0.11

Table 2: Mean/standard deviation of UAS/LAS for
each parser and for the different setups by repeat-
ing the experiments 5 times. All the results are sta-
tistically significant (p < 0.05) and the best values
are showed in boldface.

Validation Test
UAS LAS UAS LAS

setup0
mi 98.30% 97.82% 98.08% 97.72%
MA 96.62% 95.10% 96.31% 94.82%

setup2
mi 97.08% 96.02% 96.32% 94.73%
MA 94.62% 91.29% 93.27% 88.50%

Table 3: Results obtained by building an ensemble
system based on the oracles mi e MA and consid-
ering all parsers.

each word in the sentence is a node. The
MSTs algorithms used are Chu-Liu/Edmons
(cle) and Eisner as reported in McDonald
et al. (2005). Three weighting strategies for

Chu-Liu/Edmons are used: equally weighted
(w2); weighted according to the total la-
beled accuracy on the validation set (w3);
weighted according to labeled accuracy per
coarse grained PoS tag on the validation set
(w4).

• Distilling: In Kuncoro et al. (2016) the au-
thors train a distillation parser using a loss
objective with a cost that incorporates ensem-
ble uncertainty estimates for each possible at-
tachment.

4 Results

Tables 4, 7 and 9 show the performances of the en-
sembles built on the best results on validation set
obtained in the 5 training/test cycles considering
both setup0 and setup2. Table 6 reports the num-
ber of malformed trees for the majority strategy.

Table 5 and 8 report the number of cases when
the ensemble combination output differs from the
baseline, including both labeled (L) and unla-
beled (U) outputs. On the average the percent-
age of different unlabeled output varies from 2%
to 15% with respect to baseline. For the best result
(DM17+ALL) the difference on setup0 and setup2
is about 4%.

The results of the voting approach reported in
Table 4 shows that the majority strategy is slightly
better than the switching strategy, although it must
be taken into account that there might be ill-
formed dependency trees for the former strategy.
The percentage of ill-formed trees on valid./test
set vary from a minimum of 2% to a maximum
of 8%. For this reasons the majority strategy
should be used when it is followed by a man-
ual correction phase. The switching strategy per-
forms well if the first parser of voters is one of the
best parsers, in fact the combinations AN16+ALL
and AN16+CM14+SH17 have worst performance
than the counterparts which using the best parser
(DM17) as the first voter. Overall, the highest
performance is achieved using all parsers together
with DM17 as the first voter. For setup0 the in-
creases are +0.19% in UAS e +0.38% in LAS,
while in setup2 are +0.92% in UAS e +2.47% in
LAS with respect to the best single parser (again
DM17).

The results of the reparsing approach reported
in Table 7 shows that the Chu-Liu/Edmonds al-
gorithm is slightly better than the Eisner algo-
rithm. In this case, the choice of which strategy



setup0
Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/maj. 94.20% 92.27% 93.77% 92.13%
DM17+CH16+BA15/swi. 94.11% 92.16% 93.79% 92.14%
AN16+CM14+SH17/maj. 90.43% 87.96% 91.03% 88.47%
AN16+CM14+SH17/swi. 89.44% 86.77% 90.17% 87.43%
DM17+CM14+SH17/maj. 93.84% 92.03% 93.82% 92.27%
DM17+CM14+SH17/swi. 93.76% 91.94% 93.82% 92.25%
AN16+ALL/maj. 94.37% 92.65% 93.83% 92.27%
AN16+ALL/swi. 93.99% 92.15% 93.43% 91.73%
DM17+ALL/maj. 94.42% 92.67% 93.94% 92.41%
DM17+ALL/swi. 94.38% 92.60% 93.91% 92.37%
DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2
Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/maj. 90.57% 87.16% 88.21% 83.64%
DM17+CH16+BA15/swi. 90.51% 87.10% 88.13% 83.51%
AN16+CM14+SH17/maj. 86.90% 83.60% 84.09% 79.78%
AN16+CM14+SH17/swi. 86.01% 82.50% 82.58% 77.94%
DM17+CM14+SH17/maj. 90.35% 87.21% 88.07% 83.64%
DM17+CM14+SH17/swi. 90.27% 87.11% 87.99% 83.52%
AN16+ALL/maj. 90.30% 87.26% 88.36% 84.13%
AN16+ALL/swi. 89.70% 86.45% 87.46% 83.06%
DM17+ALL/maj. 90.64% 87.60% 88.51% 84.42%
DM17+ALL/swi. 90.65% 87.62% 88.50% 84.20%
DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

Table 4: Results of ensembles using switching and
majority approaches on the best models in setup0
and setup2. The baseline is defined by the best
results of Dozat and Manning (2017).

to use must take into account if we want to allow
non-projectivity or not. The percentage of non-
projective dependency trees on valid./test set for
Chu-Liu/Edmonds vary from a minimum of 7% to
a maximum of 12% compared with the average for
the Italian corpora of 4%. Overall, the highest per-
formances are achieved using Chu-Liu/Edmonds
algorithm. For setup0 the increases are +0.25%
in UAS and +0.45% in LAS, while in setup2 are
+0.77% in UAS and +2.30% in LAS with respect
to the best single parser (DM17).

The results of the distilling strategy reported in
Table 9, unlike the previous proposals, show worse
outcomes, which score below the baseline.

5 Discussion and Conclusions

We have studied the performances of some neu-
ral dependency parsers on generic and social me-
dia domain. Using the predictions of each single
parser we combined the best outcomes to improve
the performance in various ways. The ensemble
models are more efficient on corpora built using
in-domain data (social media), giving an improve-
ment of ∼ 1% in UAS and ∼ 2.5% in LAS.

setup0
Validation Test

/11.908 /10.417
Voters/Strategy U L U L
DM17+CH16+BA15/maj. 208 61 188 46
DM17+CH16+BA15/swi. 192 52 175 39
AN16+CM14+SH17/maj. 1.006 424 783 336
AN16+CM14+SH17/swi. 1.130 489 870 371
DM17+CM14+SH17/maj. 170 37 139 15
DM17+CM14+SH17/swi. 157 33 129 13
AN16+ALL/maj. 382 126 328 105
AN16+ALL/swi. 460 164 386 133
DM17+ALL/maj. 356 117 282 81
DM17+ALL/swi. 312 97 255 72

setup2
Validation Test

/24.243 /12.668
Voters/Strategy U L U L
DM17+CH16+BA15/maj. 597 219 470 213
DM17+CH16+BA15/swi. 521 185 394 172
AN16+CM14+SH17/maj. 2.757 1.329 1.805 941
AN16+CM14+SH17/swi. 2.976 1.429 1.986 1.033
DM17+CM14+SH17/maj. 490 140 337 93
DM17+CM14+SH17/swi. 453 121 300 73
AN16+ALL/maj. 1.377 624 897 440
AN16+ALL/swi. 1.610 741 1.063 534
DM17+ALL/maj. 1.156 502 784 378
DM17+ALL/swi. 920 374 614 280

Table 5: Numbers of cases when there is a dif-
ferent output between the ensemble systems, us-
ing switching and majority, and the baseline Dozat
and Manning (2017).

setup0 setup2
Voters Valid. Test Valid. Test

/564 /482 /1235 /674
DM17+CH16+BA15 9 7 31 31
AN16+CM14+SH17 45 25 88 77
DM17+CM14+SH17 6 6 19 23
AN16+ALL 18 17 73 63
DM17+ALL 17 11 75 57

Table 6: Number of malformed trees obtained by
using the majority strategy for both setups.

Thanks to the number of parser models adopted
in the experiments it has been possible to verify
that the performances of the ensemble models in-
crease as the number of parsers grows.

The improvement of LAS is, in most cases, at
least twice the value of UAS. This could mean
that ensemble models catch with better precision
the type of dependency relations rather than head-
dependent relations.

All the proposed ensemble strategies, except for
distilling, perform more or less in the same way,
therefore the choice of which strategy to use is
due, in part, to the properties that we want to ob-
tain on the combined dependency tree.

Our work is inspired by the work of Mazzei



setup0
Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 93.82% 91.85% 93.54% 91.83%
DM17+CH16+BA15/cle-w3 93.89% 91.82% 93.78% 92.06%
DM17+CH16+BA15/cle-w4 94.20% 92.28% 93.72% 92.04%
DM17+CH16+BA15/eisner 94.05% 92.05% 93.46% 91.78%
ALL/cle-w2 94.31% 92.53% 93.85% 92.23%
ALL/cle-w3 94.16% 92.41% 94.00% 92.48%
ALL/cle-w4 94.29% 92.58% 93.95% 92.38%
ALL/eisner 94.31% 92.53% 93.95% 92.35%
DM17 (baseline) 93.74% 91.66% 93.75% 92.03%

setup2
Validation Test

Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 90.33% 86.95% 87.69% 83.31%
DM17+CH16+BA15/cle-w3 89.82% 85.96% 87.59% 81.95%
DM17+CH16+BA15/cle-w4 90.41% 86.99% 87.94% 83.32%
DM17+CH16+BA15/eisner 90.50% 87.05% 88.04% 83.51%
ALL/cle-w2 90.52% 87.53% 88.36% 84.25%
ALL/cle-w3 89.90% 86.75% 87.79% 83.54%
ALL/cle-w4 90.42% 87.46% 88.19% 84.11%
ALL/eisner 90.45% 87.41% 88.31% 84.08%
DM17 (baseline) 89.82% 85.96% 87.59% 81.95%

Table 7: Results of ensembles using reparsing ap-
proaches on the best models in setup0 and setup2.
The baseline is again defined by the best results of
DM17.

setup0
Validation Test

/11.908 /10.417
Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 360 129 307 90
DM17+CH16+BA15/cle-w3 96 0 89 1
DM17+CH16+BA15/cle-w4 267 76 247 52
DM17+CH16+BA15/eisner 375 130 327 103
ALL/cle-w2 400 131 333 103
ALL/cle-w3 351 108 299 79
ALL/cle-w4 383 126 307 87
ALL/eisner 411 133 333 106

setup2
Validation Test

/24.243 /12.668
Voters/Strategy UAS LAS UAS LAS
DM17+CH16+BA15/cle-w2 1.056 496 800 424
DM17+CH16+BA15/cle-w3 0 0 0 0
DM17+CH16+BA15/cle-w4 603 264 491 236
DM17+CH16+BA15/eisner 1.047 443 789 376
ALL/cle-w2 1.347 599 882 417
ALL/cle-w3 1.261 537 804 363
ALL/cle-w4 1.274 576 822 389
ALL/eisner 1.367 607 916 436

Table 8: Numbers of cases when there is a differ-
ent output between the ensemble systems, using
reparsing approaches, and the baseline Dozat and
Manning (2017).

(2015). Different from his work, we use larger
set of state-of-the-art parsers, all based on neural
networks, in order to gain more diversity among

Setup UAS LAS
setup0 92.50% (–1.25%) 89.93% (–2.10%)
setup2 86.73% (–0.86%) 81.39% (–0.56%)

Table 9: Results of distilling approach on the best
models in setup0 and setup2. In brackets are re-
ported the differences between the distilled mod-
els and the best results of DM17, as baseline.

the models used in the ensembles; furthermore we
have experimented the distilling strategy and eis-
ner reparsing algorithm. Moreover, we built en-
sembles on larger datasets using both generic and
social media texts.
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