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Abstract

English. In the present study, we inves-
tigated to what extent compounding in-
volves general-level cognitive abilities re-
lated to conceptual combination. If that
was the case, the compounding mecha-
nism should be largely invariant across dif-
ferent languages. Under this assumption,
a compositional model trained on word
representations in one language should be
able to predict compound meanings in
other languages. We investigated this hy-
pothesis by training a word embedding-
based compositional model on a set of
English compounds, and subsequently ap-
plied this model to German and Italian test
compounds. The model partially predicted
compound meanings in German, but not in
Italian.

Italiano. In questo lavoro abbiamo in-
vestigato quanto la composizione sottenda
abilita cognitive generali relata alla com-
binazione concettuale. Se questo fosse
il caso, il meccanismo composizionale
dovrebbe variare in maniera limitata tra
diverse lingue. Di conseguenza, un mod-
ello composizionale basato su rappre-
sentazioni lessicali in una data lingua
dovrebbe essere in grado di predire signi-
ficati composizionali in altre lingue. Abbi-
amo testato questa ipotesi addestrando un
modello composizionale sui word embed-
dings di un set di composti inglesi, e suc-
cessivamente testato lo stesso modello su
composti tedeschi e italiani. Il modello e
in grado di predire in modo parzialmente
corretto le rappresentazioni dei composti
in tedesco, ma non italiano.
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1 Introduction

Compounds are complex words such as airport,
with two constituents that can be used as free
words. Compounding is a highly prevalent phe-
nomenon across many languages. It has been
argued to be a proto-linguistic structure to com-
bine simple words into novel and complex con-
cepts, from which more complex compositional
language structures have been derived (Jackend-
off, 2002).

Given the prevalence and ubiquity of com-
pounding across languages, it is reasonable to as-
sume that speakers of different languages rely, to
some degree, on the same cognitive mechanisms
to compose the meanings of constituents into a
compound meaning. Indeed, the linguistic phe-
nomenon of compounding is generally considered
to be the linguistic mirror of the cognitive process
of conceptual combination (Gagné and Spalding,
2009; Murphy, 2002). Thus, while specific aspects
of compounding will inevitably vary between lan-
guages due to differences in the language structure
and other idiosyncracies, we assume that there is
also a language-invariant aspect of compounding
that can be transferred across languages. We will
investigate this hypothesis by examining whether
a compositional model trained on one language
(English) is able to predict compound meanings
in other languages (German and Italian).

2 Compositional Model

In our study, word meanings are represented via
word embeddings derived from large corpora us-
ing the word2vec model (Mikolov et al., 2013). As
a model to derive compound meaning representa-
tions from these vectors, we employ the CAOSS
model (Marelli et al., 2017), which relies on the
compositional model for distributional word vec-
tors proposed by Guevara (2010).

The CAOSS model computes the meaning of a



compound as

c=M-u+H- v (1)

, where c is the n-dimensional vector represent-
ing the compound meaning, v and v are the n-
dimensional vectors representing the first and sec-
ond constituent, respectively, and M and H are
n X n-dimensional weight matrices updating the
free word meanings into constituent meanings be-
fore they are combined.

The weight matrices M and H are estimated
through a training procedure on all compound
words available in the source corpus for the word
embeddings. They are estimated in a least-square
regression procedure aimed at optimally predict-
ing these observed compound meanings ¢ from
the constituent meanings v and v, following Equa-
tion 1.

3 Evaluation Material

In order to investigate our hypothesis, we em-
ployed three sets of compounds, collected from
various sources: The English set consisted of
5,618 compounds in closed form, collected from
the words tagged as noun-noun combinations in
the CELEX database (Baayen et al., 1995) and
the English Lexicon Project (Balota et al., 2007),
and in hyphenated form, collected from the ukWaC
corpus as described below. The German set con-
sisted of 3,451 compounds in closed form, col-
lected from (Brysbaert et al., 2011) and the Ghost-
NN database (Schulte im Walde et al., 2016). The
Italian set of 216 compounds in closed form, col-
lected by one of the authors from an Italian dic-
tionary (Sabatini and Coletti, 2007). Note that the
Italian dataset is smaller than the other sets, since
compounds are far less common in Italian than
in English or German, where compounds are ex-
tremely prevalent and compounding is highly pro-
ductive.

No restrictions based on linguistic criteria (such as
endocentric vs. exocentric, or head-first vs. head-
second) were applied in the selection of the com-
pounds.

4 Inducing Word Vectors and Training
the Compositional Model
4.1 Word Embeddings

Word
three

were trained on
web-based corpora

embeddings
different

(http://wacky.sslmit.unibo.it):

The English 2 billion word corpus ukWaC, the
German 1.7 billion word corpus deWaC, and
the Italian 2 billion word vorpus itWaC. While
these corpora are not parallel corpora, they were
collected using the same web crawler run on
different domains (.uk, .de, and .it, respectively).
Furthermore, they are very large corpora, which
should lead to highly averaged word meaning
representations within all three languages. From
each of these corpora, word2vec word embeddings
were derived using the parameter set shown to
produce the best results by Baroni et al. (2014):
The cbow algorithm with a context window size
of 5 words producing 400-dimensional vectors
(negative sampling with k& = 10, subsampling
with ¢ = 1le™®). Word embeddings were only
trained for words that occurred more than 50
times in a source corpus.

4.2 Second-Level Vectors

Obviously, the three different semantic spaces
were not comparable to one another, as each set
of word vectors was trained only on a single-
language corpus. Since the weights specified in
the matrices M and H of the CAOSS model en-
code how much each output dimension value for
the constituent-updated vectors Mwu and Hv is
influenced by each input dimension value of the
word vectors for the constituents u and v, we could
not reasonably apply the CAOSS model trained
in one language to word embeddings in another
language. We needed word vectors whose dimen-
sions are comparable across the three languages.
To this end, we decided to construct second-level
vectors from the original word embeddings.

The basis for these second-level vectors is
the observation that, while word embeddings are
not comparable between languages, the similarity
structure between sets of words is highly compara-
ble across languages. We exploit this observation
to define second-level vectors as vectors of sim-
ilarities between the target and an ordered list of
content words (see Table 1). By choosing a list
of content words that are as unambiguous as pos-
sible and have clear translations across all three
languages (such as pizza, Pizza, pizza), we aimed
at keeping the second-level vector entries as com-
parable as possible across languages. We con-
structed a list containing 300 such aligned con-
tent words. With these words, we can demonstrate



original word embeddings

diml dim2 dim3
tomato,,  0.58 -0.66 -092 .
Tomate . -0.23  0.12 0.20
pomodoro;; -0.01  0.39 -1.37
second-level vectors
en red pizza  horse
de rot Pizza Pferd
it rosso pizza cavallo
tomato., 022 028 007 .
Tomate 4, 023 0.30 0.12
pomodoro;;  0.23  0.26 0.04

Table 1: An example for dimensional values of
original and second-level word embeddings.

that the similarity structure between words is in-
deed comparable across languages: We computed
all pairwise similarities between these 300 words
within each language, and then compared this list
of similarities across languages. Similarity corre-
lations across the three languages are substantial:
r = .77 for English-German, r» = .76 for English-
Italian, and r» = .79 for German-Italian.

With this aligned list, we converted our word
embeddings into second-level vectors by comput-
ing, within each language, the cosine similarities
between each word in the original semantic space
and the 300 content words (see Table 1).

4.3 Evaluation of Second-Level Vectors

In order to serve as adequate word vectors for our
compositional model, these second-level vectors
need to satisfy two criteria: Firstly, they must ade-
quately capture the similarity structure of the orig-
inal word embeddings within each language, in or-
der to be used as a substitute for the original word
embeddings. Secondly, they have to align word
vectors between the three languages: for exam-
ple, the second-level vector for tomato in English
should be very similar to the second-level vector
for Tomate in German and for pomodoro in Ital-
ian.

Within-Language Reliability. To test for
within-language constancy, we first computed the
pairwise cosine similarities between all compound
constituents from these item sets. Additionally,
we computed the cosine similiarities between each
compound and its two constituents within each
language. These are valid test sets for our study
since these are the very embeddings employed to

run and test our compositional model later on. In
a next step, we computed the same similarities
using not the original word embeddings, but
the second-level vectors. We then calculated
correlations between all the similarity scores
computed from the two different vector sets for
each of the three languages.

For English, the correlation between the pair-
wise constituent similarities (2,386 different con-
stituents) was r = .86, and the correlation be-
tween the constituent-compound similarities was
r = .79. For German, the correlation between
the pairwise constituent similarities (1,929 differ-
ent constituents) was r = .80, and the correla-
tion between the constituent-compound similari-
ties was » = .72. For Italian, the correlation
between the pairwise constituent similarities (568
different constituents) was r = .81, and the corre-
lation between the constituent-compound similar-
ities was 7 = .74. Thus, the similarity structure
of the original semantic spaces is to a large extent
captured by the second-level vectors, which quali-
fies them as reliable word meaning representations
for our study.

Between-Language Alignment. We tested the
across-language alignment of the second-level
vectors by means of the original list of 300 con-
tent words. This list was constructed to include
words that have single clear translation across all
three languages. Thus, if the second-level vectors
are indeed aligned across the three languages, the
three vectors representing these translated words
in each language should be very similar to one an-
other.

To test this, we computed the cosine similar-
ity between each of the three translations of these
words across the three languages. Using the
original word embeddings, the average similari-
ties were virtually zero, as expected for different
model trained on different languages: M = .01
for English-German, M = —.00 for English-
Italian, and M = .01 for German-Italian. How-
ever, computing the same similarities from the
second-level vectors improved results dramati-
cally: M = .80 for English-German, M = .80 for
English-Italian, and M = .82 for German-Italian.
Thus, the second-level vectors are to a large extent
aligned across languages, providing the ground to
apply a composition model trained on vectors in
one language on vectors of the other languages.
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Figure 1: Similarities (mean values and .95 con-
fidence intervals) between observed and model-
derived (second-level) vectors for compounds
across the three different languages.

4.4 Training the CAOSS model

The CAOSS model was trained on the English
second-level word vectors. As a training set, we
employed the set of 5,618 English compounds de-
scribed in the section Evalutation Material. The
other two languages, German and Italian, were not
considered during training.

5 Results

Using the matrices M and H obtained from this
training, we computed, for each compound in our
evaluation sets, its compound meaning as pre-
dicted from the compositional CAOSS model (see
Equation 1). The model trained on English was
used to compute the model-derived compound
meanings for all three languages. We then com-
puted the cosine similarities between these pre-
dicted meanings and the corresponding, actually
“observed” compound meanings (their respective
second-level vectors; e.g. airport — [air+port]).
As a baseline comparison level within each lan-
guage, we computed similarities between the ob-
served compound meanings and model-derived
meanings for a random pair of nouns (such as air-
port — [spring+feeling]). The mean similarities
are displayed in Figure 1.

For English, on which our CAOSS model was
trained, we obtained a mean similarity between
model-derived and observed vectors of M = .64,
which was significantly above the random baseline

(t(5617) = 122.4, p < .001).

For the German evaluation set, the mean sim-
ilarity between model-derived and observed vec-
tors was M = .26, which is significantly above
baseline (¢(3450) = 20.12, p < .001).

In contrast, for the Italian evaluation set,
the actual similarities did not beat the baseline
(t(215) = 1.39, p = .165). Note that Ital-
ian compounds can be classified into head-first
compounds (such as pescespada — swordfish, lit.
fishsword) or head-second compounds (such as fu-
nivia — (lit.) ropeway)'. However, the actual sim-
ilarities did not beat the baseline in either case
(t(58) = 1.67, p = .100 for head-first com-
pounds; £(156) = 0.56, p = .578 for head-second
compounds).

The mean value in English differed significantly
from German (¢(6460) = 75.53, p < .001),
which in turn differed significantly from Italian
(t(238) = 8.18, p < .001).

6 Discussion

Our results show that a compositional model
trained in one language exclusively (English) can
be applied to another language (German) to par-
tially predict the meanings of compounds in the
latter, of which the model had no training ex-
perience at all. Obviously, the model trained
on English compounds predicted English com-
pound meanings far better than German com-
pound meanings. This does not stand contrary to
our hypothesis: We do not assume that compound-
ing is a tout-court language-invariant mechanism,
but that compounding also encompasses general
mechanisms besides language-specific features.

However, the model trained on English was not
able to predict Italian compound meanings above
baseline level. Thus, our results only partially
support our hypothesis. In interpreting this find-
ing, it has to be considered that the Italian eval-
uation set was far smaller than the English and
the German sets, leading to decreased statistical
power in this case (note that, on a purely descrip-
tive level, model performance in Italian is slightly
above baseline). Keeping that in mind, our results
indicate that the applicability of a compositional
model across languages seems to depend on the
similarity between the language in which a model
was trained and the one where it is applied.

!The head is the compound constituent that denotes the
semantic category of a word: an airport is a type of port.



In structural terms, German is in fact much
more similar to English than Italian. Both En-
glish and German are West-Germanic languages
which almost exclusively produce head-second
compounds and have highly productive and very
rich compounding systems. Italian compounds
however can be head-first or head-second, and the
compounding system is far less productive in Ital-
ian than in English or German (one of the factors
responsible for the fact that our Italian item set was
smaller than the English or German sets). This ex-
planation is still tentative given the restricted range
of languages investigated here. A more thorough
investigation on this specific issue would require
tests on a wide range of languages, which should
be theoretically characterized in terms of their
structural similarity with respect to compounding
beforehand.

Additionally, future work is required to address
other language-dependent aspects of compound-
ing. For example, we focussed only on closed-
form compounds, while some languages (for ex-
ample English and Italian, but not German) can
produce open forms such as school bus or pesce
spada. Another issue to be investigated more
closely is headedness. On the one hand, head-
second Italian compounds are more similar to En-
glish and German from a structural point of view;
on the other hand, head-first compounds are as-
sumed to be more like English and German in
terms of productivity and regularity of meaning.
Although our item set included head-first as well
as head-second Italian compounds, both are obvi-
ously still smaller than the complete Italian item
set. Thus, in future studies larger item sets are re-
quired to provide such differential tests with the
necessary statistical power.
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