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Abstract. Berman and Paterson proved that Test-Free PDL is weaker
than PDL. As the description logics ALCtrans and ALCreg are, respec-
tively, variants of Test-Free PDL and PDL, there is a concept of ALCreg
that is not equivalent to any concept of ALCtrans. Generalizing this, we
show that there is a concept of ALCreg that is not equivalent to any
concept of the logic that extends ALCtrans with inverse roles, nominals,
qualified number restrictions, the universal role and local reflexivity of
roles. We also provide some results for the case with RBoxes and TBoxes.
One of them states that tests can be eliminated from TBoxes of the de-
terministic Horn fragment of ALCreg.

1 Introduction

Propositional Dynamic Logic (PDL) is a well-known modal logic for reasoning
about computer programs [5,7]. Its variant ALCreg is a description logic (DL) for
reasoning about terminological knowledge [16]. Berman and Paterson [2] proved
that Test-Free PDL is weaker than PDL. In particular, they gave a formula of
PDL that is not equivalent to any formula of Test-Free PDL. This means that
there is a concept of ALCreg that is not equivalent to any concept of ALCtrans
(a variant of Test-Free PDL). While bisimulations are usually used for separat-
ing the expressive powers of modal and description logics (see, e.g., [3,4,10]),
the proof given by Berman and Paterson [2] exploits the fact that “over a sin-
gle symbol alphabet, the regular sets are precisely those which are ultimately
periodic” (see [6, Theorem 3.1.2]) and is somehow similar to the proof of that
connectivity is inexpressible in first-order logic.

Generalizing the result and method of Berman and Paterson, in Section 3 we
prove that there is a concept of ALCreg that is not equivalent to any concept
of the DL ALCIOQUSelftrans, which extends ALCtrans with inverse roles (I),
nominals (O), qualified number restrictions (Q), the universal role (U) and local
reflexivity of roles (Self ) as of the DL SROIQ [8]. That is, extending ALCtrans
with the features I, O, Q, U and Self does not help in expressing the test
operator. Modifying the proof of Berman and Paterson [2] for dealing with the
features O, Q, U and Self can be done in a rather straightforward way (see
our Lemmas 1, 3, 4 and their proofs). However, dealing with inverse roles (I)
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requires an advanced refinement, as regular sets over an alphabet consisting of
an atomic role and its inverse need not be ultimately periodic. The proof of our
Lemma 2 is more sophisticated than the proof of [6, Theorem 3.1.2].

In Section 4, we provide a result stating that using regular RBoxes and acyclic
TBoxes for ALCIOQUSelftrans does not help in expressing tests, but using
simple stratified TBoxes under the stratified semantics on the background allows
us to express every concept by another without tests. A further result states
that tests can be eliminated from TBoxes of the deterministic Horn fragment
of ALCreg. This suggests that tests can be eliminated from tractable1 Horn
fragments of PDL-like logics.

2 Preliminaries

This section provides notions and definitions related with syntax and semantics
of DLs [1]. We denote the sets of concept names, role names and individual
names by C, R+ and I, respectively. A concept name is an atomic concept, a
role name is an atomic role. Let R = R+ ∪R−, where R− = {r | r ∈ R+} and
r is called the inverse of r. We call elements of R basic roles. We distinguish a
subset of R+ whose elements are called simple roles. If r ∈ R+ is a simple role,
then r is also a simple role. The set Σ = C ∪R+ ∪ I is called the signature.

Let Φ ⊆ {I,O,Q,U ,Self }, where the symbols mean inverse roles, nominals,
qualified number restrictions, the universal role and local reflexivity of roles,
respectively. Roles and concepts of the DLs ALC, ALC+Φ, (ALC+Φ)trans and
(ALC+Φ)reg are defined as follows.

If L = ALC, then:

– if r ∈ R+, then r is a role of L,
– if A ∈ C, then A is a concept of L,
– > and ⊥ are concepts of L,
– if C and D are concepts of L and R is a role of L,

then ¬C, C tD, C uD, ∃R.C and ∀R.C are concepts of L.

If L = ALC+Φ, then additionally:

– if I ∈ Φ and R is a role of L, then R is a role of L,
– if O ∈ Φ and a ∈ I, then {a} is a concept of L,
– if Q ∈ Φ, n ∈ N, C is a concept of L, R is a simple role of L (i.e., a simple

role that is a role of L), then ≥nR.C and ≤nR.C are concepts of L,
– if U ∈ Φ, then U is a role of L,
– if Self ∈ Φ and r ∈ R+, then ∃r.Self is a concept of L.

If L = (ALC+Φ)trans, then additionally:

– ε is a role of L,
– if R and S are roles of L and are different from U ,

then R t S, R ◦ S and R∗ are roles of L.

1 I.e., with a PTime or lower data complexity.



The Influence of the Test Operator on the Expressive Power 3

⊥I = ∅ >I = ∆I {a}I = {aI} (¬C)I = ∆I \ CI R
I

= (RI)−1

(C uD)I = CI ∩DI (C tD)I = CI ∪DI εI = {〈x, x〉 | x ∈ ∆I}
(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI ∧ y ∈ CI)} (R ◦ S)I = RI ◦ SI

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI ⇒ y ∈ CI)} (R t S)I = RI ∪ SI

(∃R.Self )I = {x ∈ ∆I | 〈x, x〉 ∈ RI} (R∗)I = (RI)∗

(≥nR.C)I = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n} (C?)I={〈x, x〉 |x ∈ CI}
(≤nR.C)I = {x ∈ ∆I | ]{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ n} UI = ∆I ×∆I

Fig. 1. Semantics of complex concepts and complex roles.

If L = (ALC+Φ)reg, then additionally:

– if C is a concept of L, then C? is a role of L.
This constructor is called the test operator.

When Φ = ∅, we shorten the names (ALC+Φ)trans and (ALC+Φ)reg to
ALCtrans and ALCreg, respectively. Similarly, we write ALCIOQUSelftrans to
denote (ALC+Φ)trans with Φ = {I,O,Q,U ,Self }, and so on.

We denote atomic concepts by letters like A or B, atomic roles by letters like
r or s, and individual names by letters like a or b. We use letters C and D to
denote (arbitrary) concepts, R and S to denote (arbitrary) roles.

An interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set, called
the domain, and ·I is the interpretation function of I that maps each a ∈ I to
aI ∈ ∆I , each A ∈ C to a subset AI of ∆I , and each r ∈ R+ to a relation
rI ⊆ ∆I × ∆I . The function ·I is extended to interpret complex roles and
concepts as specified in Figure 1.

Concepts C and D are equivalent, denoted by C ≡ D, if CI = DI for all
interpretations I. Similarly, roles R and S are equivalent, denoted by R ≡ S, if
RI = SI for all interpretations I.

If L is a sublogic of L′ (like (ALC+Φ)trans is a sublogic of (ALC+Φ)reg),
then we say that L is weaker (or less expressive) than L′ (in expressing concepts)
if there exists a concept C of L′ that is not equivalent to any concept of L.

2.1 RBoxes

A finite set S of context-free production rules over R is called a context-free semi-
Thue system over R. It is symmetric if R → Sk . . . S1 belongs to S for every
production rule R → S1 . . . Sk of S.2 It is regular if the language consisting of
words derivable from any R ∈ R is regular. Assume that R is derivable from
itself.

2 If k = 0, then the RHS (right hand side) of each of the rules represents the empty
word ε.
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A role inclusion axiom (RIA) has the form S1 ◦ · · · ◦ Sk v R, where k ≥ 0
and S1, . . . , Sk, R are basic roles. If k = 0, then the LHS (left hand side) of the
inclusion stands for ε.

A (regular) RBox is a finite set R of RIAs such that S = {R → S1 . . . Sk |
(S1 ◦ · · · ◦ Sk v R) ∈ R} is a regular and symmetric semi-Thue system with the
property that only ε and words with length 1 can be derived from any simple
role R ∈ R. An RBox is allowed for a DL L if it uses inverse roles only when
they are allowed for L. Since it is undecidable whether a context-free semi-Thue
system is regular, we assume that each RBox R is accompanied by a mapping
πR that associates each R ∈ R with a regular expression πR(R) that generates
the set of words derivable from R using the rules of the corresponding semi-Thue
system.

If S1 ◦ · · · ◦ Sk v R is a RIA of R, then we call R an intensional predi-
cate specified by R. An interpretation I validates a RIA S1 ◦ · · · ◦ Sk v R if
(S1 ◦ · · · ◦ Sk)I ⊆ RI . It is a model of an RBox R if it validates all RIAs of R.

2.2 TBoxes

A TBox axiom (or terminological axiom) is either a general concept inclusion
(GCI) C v D or a concept equivalence C

.
= D. A concept equivalence A

.
= D

(where A ∈ C) is called a concept definition. A TBox is a finite set of TBox
axioms. It is allowed for a DL L if it uses only concepts of L. An interpretation
I validates C v D (resp. C

.
= D) if CI ⊆ DI (resp. CI = DI). It is a model of

a TBox T if it validates all axioms of T .
A TBox T is acyclic if there exist concept names A1, . . . , An such that T

consists of n axioms and the i-th axiom of T is of the form Ai
.
= C, C v Ai

or Ai v C, where C does not use the concept names Ai, . . . , An. The concept
names A1, . . . , An are called intensional predicates specified by T .

A TBox T is called a simple stratified TBox if there exists a partition
(T1, . . . , Tn) of T , called a stratification of T , such that, for each 1 ≤ i ≤ n,
Ti = {Ci,j v Ai,j | 1 ≤ j ≤ ni}, where each Ai,j is a concept name that does
not occur in T1, . . . , Ti−1 and may occur at the LHS of v in the axioms of Ti
only under the scope of u, t and ∃. The concept names Ai,j , for 1 ≤ i ≤ n and
1 ≤ j ≤ ni, are called intensional predicates specified by T .

Note that negation (¬) is allowed at the LHS of v in GCIs of a simple
stratified TBox, but it can be applied only to concepts that do not use the
predicates defined in the current or later strata.

3 The First Result

In this section, we prove the following theorem:

Theorem 1. There is no concept of ALCIOQUSelftrans equiv-
alent to the concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg.



The Influence of the Test Operator on the Expressive Power 5

To prove this theorem we will use a family of interpretations Im =
〈∆Im , ·Im〉, m > 1, illustrated and specified as follows:
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– ∆Im = {w−2m, w−2m+1, . . . , w2m},
– rIm = {〈wi, wi+1〉, 〈w2m, w−2m〉 | −2m ≤ i < 2m},
– sIm = ∅ for s ∈ R+ − {r},
– BIm = {w−2m, w−m, w0, wm, w2m},
– AIm = ∆Im −BIm ,
– CIm = ∅ for C ∈ C− {A,B},
– aIm = w2m for a ∈ I.

Note that |∆Im | = 4m + 1. Comparing Im with the structure Am used in [2],
note that the domain of Am has the size 2m+1, Am does not deal with nominals,
and only one propositional variable is interpreted in Am as a non-empty subset
of the domain.

Observe that, for C being one of the two concepts mentioned in Theorem 1,
w0 ∈ CIm but wm /∈ CIm . The structure of the proof of Theorem 1 is as follows.
Given any concept D of ALCIOQUSelftrans, we first transform it to a concept
D2 of ALCIOtrans over the signature {r,A,B, a} such that DIm2 = DIm for
all m > 1 (see Lemma 1). We then transform D2 to a concept D3 such that
DIm3 = DIm2 for all m > 1, the ∗ operator is used only for rn and rn for
some n (see Lemma 2), and for every subconcept ∃R.D′3 or ∀R.D′3 of D3, R is
of the form r, r, (rn)∗ or (rn)∗ for some n ≥ 1 (see Lemma 3). Next, we show
that there exists m > 1 such that w0 ∈ DIm3 ⇔ wm ∈ DIm3 (see Lemma 4).
Thus, for that m, CIm 6= DIm3 , and therefore, C is not equivalent to D (since
DIm3 = DIm2 = DIm).

Lemma 1. For any concept C of ALCIOQUSelftrans, there exists a concept
D of ALCIOtrans over the signature {r,A,B, a} such that DIm = CIm for all
m > 1.

Proof. Let D be the concept obtained from C by:

– replacing every subconcept



6 L.A. Nguyen

• ≥nR.E, where n ≥ 2, by ⊥,
• ≥1R.E by ∃R.E,
• ≥0R.E by >,
• ≤nR.E, where n ≥ 1, by >,

• ≤0R.E by ∀R.¬E,
• ∃U.E by ∃r∗.E,
• ∀U.E by ∀r∗.E,
• ∃R.Self by ⊥,

– replacing every concept name different from A and B by ⊥,
– replacing every nominal {b}, where b 6= a, by {a},
– replacing every role name s different from r by ∅,
– repeatedly replacing every role ∅ tR or R t ∅ by R, every role ∅∗ by ε, and

every role ∅, ∅ ◦R or R ◦ ∅ by ∅,
– replacing every subconcept ∃∅.E by ⊥, and every ∀∅.E by >.

It is easy to see that D satisfies the properties mentioned in the lemma. �

We treat a word R1 . . . Rk over the alphabet {r, r} as the role R1 ◦ · · · ◦Rk,
and by Rn we denote the composition of n copies of R. Thus, R0 = ε. Conversely,
a role R without tests that uses only basic roles r and r is treated as a regular
expression over the alphabet {r, r} (where t stands for ∪, and ◦ for ;). For such
a role R, by L(R) we denote the regular language generated by R. For a word R
over the alphabet {r, r}, by |R| we denote the length of R (defined in the usual
way), and by ||R|| we denote the norm of R, which is defined as follows: ||ε|| = 0,
||r|| = 1, ||r|| = −1, ||RS|| = ||R||+ ||S||. Observe that, for words R and S over
the alphabet {r, r}, if ||R|| = ||S||, then RIm = SIm for all m > 1.

Lemma 2. Let R be a role without tests that uses only basic roles r and r. Then,
there exists a role S such that SIm = RIm for all m > 1 and the ∗ operator can
be used in S only for rn and rn for some n.

Proof. Since L(R) is a regular language, by the pumping lemma, there exists
an integer p > 0 such that every word from L(R) of length at least p can be
represented as xyz such that |y| > 0, |xy| ≤ p and xyiz ∈ L(R) for all i ≥ 0.

Let n = p(p − 1) · · · 2 · 1 and let L′ be the language obtained from L(R)
by deleting all words y such that there exists x ∈ L(R) with |x| < |y| and
||x|| = ||y||. By pumping(x, y, z) we denote the formula

xyz ∈ L′ ∧ |y| > 0 ∧ |xy| ≤ p ∧ ∀i ≥ 0 xyiz ∈ L(R).

Observe that, if w′ = xyz ∈ L′ and pumping(x, y, z) holds, then:

– ||y|| 6= 0 because otherwise we would have xz ∈ L(R), |xz| < |w′| and
||xz|| = ||w′||, which contradict the definition of L′;

– if ||y|| > 0 then, for all i ≥ 0, there exists u ∈ L(R) with ||u|| = ||w′(rn)i||;
– if ||y|| < 0 then, for all i ≥ 0, there exists u ∈ L(R) with ||u|| = ||w′(rn)i||.

Denote this observation by (?). For each integer j, 0 ≤ j < n, let

K+
j = {||xyz|| : pumping(x, y, z), n | (||xyz|| − j) and ||y|| > 0}

K−j = {||xyz|| : pumping(x, y, z), n | (||xyz|| − j) and ||y|| < 0}.
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For intuition, informally, we intend to define S to be the role⊔
S1 t ((

⊔
S2) ◦ (rn)∗) t ((

⊔
S3) ◦ (rn)∗), (1)

where S1, S2 and S3 are the finite sets of words over the alphabet {r, r} con-
structed as follows:

– S1 := {x ∈ L′ : |x| < p}, S2 := ∅, S3 := ∅;
– for each j from 0 to n− 1 do
• if K+

j 6= ∅ then

- if K+
j does not have a minimum then add rj to both S2 and S3;

- else: let k = minK+
j , if k ≥ 0 then S2 := S2 ∪ {rk} else S2 := S2 ∪

{(r)−k} (for this second case, notice that −k is a positive integer);
• if K−j 6= ∅ then

- if K−j does not have a maximum then add rj to both S2 and S3;

- else: let k = maxK−j , if k ≥ 0 then S3 := S3 ∪ {rk} else S3 :=

S3 ∪ {(r)−k}.

Formally, we define S to be the role obtained from (1) by deleting any i-th
main disjunct such that Si is empty, for i ∈ {1, 2, 3}. To prove that SIm = RIm

for all m > 1 it is sufficient to show that:

1. if w ∈ L(S), then there exists u ∈ L(R) such that ||u|| = ||w||,
2. if w ∈ L(R), then there exists u ∈ L(S) such that ||u|| = ||w||.

Consider the assertion (1) and let w ∈ L(S). There are the following cases:

– Case w ∈ S1: We have that w ∈ L′ ⊆ L(R). Just take u = w.
– Case w = rj(rn)h, K+

j 6= ∅ and K+
j does not have a minimum: Thus,

there exists w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and
||w′|| = j + n · h′ for some h′ < h. By (?), there exists u ∈ L(R) such that
||u|| = ||w||.

– Case w = rk(rn)h, K+
j 6= ∅, k = minK+

j and k ≥ 0: Thus, there exists
w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and ||w′|| = k.
By (?), there exists u ∈ L(R) such that ||u|| = ||w||.

– Case w = (r)−k(rn)h, K+
j 6= ∅, k = minK+

j and k < 0: Thus, there exists
xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| > 0 and ||w′|| = k. Notice
that ||(r)−k|| = k. By (?), there exists u ∈ L(R) such that ||u|| = ||w||.

– Case w = rj(rn)h, K−j 6= ∅ and K−j does not have a maximum: Thus,
there exists w′ = xyz ∈ L′ such that pumping(x, y, z) holds, ||y|| < 0 and
||w′|| = j + n · h′ for some h′ > h. By (?), there exists u ∈ L(R) such that
||u|| = ||w||.

– The four previous cases are related to S2. The four remaining cases, which
are related to S3, can be dealt with in a similar way.

Consider the assertion (2) and let w ∈ L(R). There exists w′ ∈ L′ such that
||w′|| = ||w||. If |w′| < p, then w′ ∈ S1 and we can just take u = w′. Suppose
|w′| ≥ p. Thus, w′ can be represented as xyz such that pumping(x, y, z) holds.
There are the following cases:
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– Case ||y|| > 0: There exists 0 ≤ j < n such that ||w′|| ∈ K+
j and ||w′|| =

j + n · i for some integer i. Consider the following subcases.

• Case K+
j does not have a minimum: Thus, rj ∈ S2. Taking u = rj(rn)i,

we have that u ∈ L(S) and ||u|| = ||w′|| = ||w||.
• Case k = minK+

j and k ≥ 0: Thus, rk ∈ S2. Observe that ||w′|| ≥ k

and n | (||w′|| − k). Taking u = r||w
′||, we have that u ∈ L(S) and ||u|| =

||w′|| = ||w||.
• Case k = minK+

j and k < 0: Thus, (r)−k ∈ S2. Observe that ||w′|| ≥ k

and n | (||w′|| − k). Taking u = (r)−k(r||w
′||−k), we have that u ∈ L(S)

and ||u|| = ||w′|| = ||w||.
– The case when ||y|| < 0 is dual to the above case and can be dealt with

analogously. �

Let C denote the set of concepts C of ALCIOtrans over the signature
{r,A,B, a} such that, for every subconcept ∃R.D or ∀R.D of C, R is of the
form r, r, (rn)∗ or (rn)∗ for some n ≥ 1.

Lemma 3. For any concept C of ALCIOtrans over the signature {r,A,B, a},
there exists a concept D ∈ C such that DIm = CIm for all m > 1.

Proof. Let E be the concept obtained from C by replacing every role R by a role
S that satisfies the conditions mentioned in Lemma 2. We have EIm = CIm for
all m > 1. Then, let D be obtained from E by repeatedly applying the following
transformations:

∃(R t S).F ≡ ∃R.F t ∃R.F ∀(R t S).F ≡ ∀R.F u ∀R.F
∃(R ◦ S).F ≡ ∃R.∃S.F ∀(R ◦ S).F ≡ ∀R.∀S.F

∃ε.F ≡ F ∀ε.F ≡ F.

It is clear that D ∈ C and DIm = EIm = CIm for all m > 1. �

For a concept C ∈ C, by nr(C) we denote the number of occurrences of ∃r,
∃r, ∀r and ∀r in C.

Lemma 4. For any concept C ∈ C and integers m and k such that m > 1,
4m+ 1 is prime and nr(C) < m− |k|, we have wk ∈ CIm ⇔ wk+m ∈ CIm .

Proof. This proof is similar to the one of [2, Lemma 3]. The intuition is as follows:

– a concept C ′ can distinguish wk and wk+m only if nr(C ′) is large enough so
that the checking can recognize that the neighborhood of wk differs from the
corresponding neighborhood of wk+m, in particular, to recognize that the
first one contains wm+1 (resp. w−m−1) and the second one contains w−2m
(resp. w2m); the reason is that, since 4m + 1 is prime, either ((rn)∗)Im =
∆Im ×∆Im or 〈wi, wj〉 ∈ ((rn)∗)Im iff j = i;

– since nr(C) < m− |k|, C cannot distinguish wk and wk+m.
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Observe that −m < k < m. We prove this lemma by induction on the
structure of C. The cases when C is A, B, > or ⊥ are trivial. The cases when
C is of the form D u E or ∀R.D are reduced to the cases of ¬(¬D t ¬E) and
¬∃R.¬D, respectively.

– Case C = {a}: Since aIm = w2m, wk /∈ CIm and wk+m /∈ CIm .
– Case C = ¬D: We have nr(D) = nr(C). By induction, wk ∈ DIm ⇔ wk+m ∈
DIm , and hence, wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = DtE: We have nr(D) ≤ nr(C) and nr(E) ≤ nr(C). By induction,
wk ∈ DIm ⇔ wk+m ∈ DIm and wk ∈ EIm ⇔ wk+m ∈ EIm , which imply
that wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃r.D: We have nr(D) = nr(C) − 1 < m − |k| − 1 ≤ m − |k + 1|.
By induction, wk+1 ∈ DIm ⇔ wk+1+m ∈ DIm . Hence, wk ∈ (∃r.D)Im ⇔
wk+m ∈ (∃r.D)Im , which means wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃r.D: We have nr(D) = nr(C) − 1 < m − |k| − 1 ≤ m − |k − 1|.
By induction, wk−1 ∈ DIm ⇔ wk−1+m ∈ DIm . Similarly to the previous
case, this implies that wk ∈ (∃r.D)Im ⇔ wk+m ∈ (∃r.D)Im , which means
wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃(rn)∗.D and (4m+ 1)|n : We have 〈wi, wj〉 ∈ ((rn)∗)Im iff j = i.
Hence,

wk ∈ (∃(rn)∗.D)Im ⇔ wk ∈ DIm
wk+m ∈ (∃(rn)∗.D)Im ⇔ wk+m ∈ DIm .

We have nr(D) = nr(C). By induction, wk ∈ DIm ⇔ wk+m ∈ DIm . There-
fore, wk ∈ CIm ⇔ wk+m ∈ CIm .

– Case C = ∃(rn)∗.D and (4m + 1)6 | n : Since 4m + 1 is prime,
0, n, 2n, 3n, . . . , (4m)n have all 4m + 1 different residues modulo 4m + 1.
Hence, 〈wi, wj〉 ∈ ((rn)∗)Im for all wi, wj ∈ ∆Im , and

wk ∈ (∃(rn)∗.D)Im ⇔ wk+m ∈ (∃(rn)∗.D)Im ,

because they are both equivalent to that there exists wj ∈ DIm . Therefore,

wk ∈ CIm ⇔ wk+m ∈ CIm .

– The case C = ∃(rn)∗.D is similar to the two previous cases. �

We now recall and prove Theorem 1.

Theorem 1 There is no concept of ALCIOQUSelftrans equiv-
alent to the concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg.

Proof. For a contradiction, suppose D is a concept of ALCIOQUSelftrans equiv-
alent to C. By Lemma 1, there exists a concept D2 ofALCIOtrans over the signa-
ture {r,A,B, a} such that DIm2 = DIm for all m > 1. By Lemma 3, there exists
a concept D3 ∈ C such that DIm3 = DIm2 for all m > 1. Let m be an integer such
that m > nr(D3) and 4m+ 1 is prime. By Lemma 4, w0 ∈ DIm3 ⇔ wm ∈ DIm3 .
This contradicts the facts that DIm3 = DIm2 = DIm = CIm , w0 ∈ CIm and
wm /∈ CIm . �
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Corollary 1. For any Φ ⊆ {I,O,Q,U ,Self }, (ALC+Φ)trans is weaker than
(ALC+Φ)reg in expressing concepts.

4 Dealing with RBoxes and TBoxes

The result of the previous section roughly states that, without using RBoxes and
TBoxes, it is hard to eliminate tests, at least it is impossible to eliminate tests
from ALCIOQUSelfreg without decreasing the expressive power. As expected,
using acyclic TBoxes that consist only of concept definitions do not help in
expressing tests. The first result of this section states that using RBoxes and
acyclic TBoxes that are defined more liberally as in Section 2 does not help either.
The second result states that, however, using simple stratified TBoxes under the
stratified semantics on the background, it is possible to express every concept by
another without tests. The third result states that tests can be eliminated from
the deterministic Horn fragment of ALCreg. Due to the lack of space, proofs of
these results are provided only in the long version [11] of the current paper.

4.1 The Case with RBoxes and Acyclic TBoxes

We say that a concept C is inexpressible in a DL L even when using RBoxes and
acyclic TBoxes if, for every concept D, every RBox R and every acyclic TBox
T of L such that the intensional predicates specified by R and T do not occur
in C, there exists a model I of R and T such that CI 6= DI .

Proposition 1. The concept C = ∃((r ◦A?)∗ ◦ r ◦B? ◦ r ◦A?).> or
C = ∃((r ◦A?)∗ ◦ r ◦ (¬A)? ◦ r ◦A?).> of ALCreg is inexpressible in
ALCIOQUSelftrans even when using RBoxes and acyclic TBoxes.

4.2 Eliminating Tests from Concepts by Simple Stratified TBoxes

Let T be a simple stratified TBox. An interpretation I is called a standard model
of T (under the stratified semantics) if there exist a partition (T1, . . . , Tn) of T
and interpretations J0, . . . ,Jn such that:

– Ti = {Ci,j v Ai,j | 1 ≤ j ≤ ni} for 1 ≤ i ≤ n,
– Jn = I and ∆Ji = ∆I for all 0 ≤ i < n,
– xJ0 = xI for all x ∈ Σ − {Ai,j | 1 ≤ i ≤ n and 1 ≤ j ≤ ni},
– for each 1 ≤ i ≤ n, xJi = xJi−1 for all x ∈ Σ−{Ai′,j | i ≤ i′ ≤ n, 1 ≤ j ≤ ni′}

and AJi
i,j , for 1 ≤ j ≤ ni, are the smallest subsets of∆Ji such that AJi

i,j = CJi
i,j .

It can be shown that, for every interpretation J0, there exists a unique standard
model I of T such that ∆I = ∆J0 and xI = xJ0 for all x ∈ Σ−{Ai,j | 1 ≤ i ≤ n
and 1 ≤ j ≤ ni}. We call it the standard model of T based on J0.

In what follows, let Φ ⊆ {I,O,Q,U ,Self } (in general, extending Φ with
other features does not affect Proposition 2 given below). Let C be a concept of
(ALC+Φ)reg, D a concept and T a simple stratified TBox of (ALC+Φ)trans such
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that the intensional predicates specified by T do not occur in C. We say that
C is expressed by D and T under the stratified semantics if, for every standard
model I of T , CI = DI .

Proposition 2. Every concept of (ALC+Φ)reg can be expressed by a concept
and a simple stratified TBox of (ALC+Φ)trans under the stratified semantics.

4.3 Eliminating Tests from Horn TBoxes

The previous subsection deals with eliminating tests from a standing alone con-
cept by using a simple stratified TBox under the stratified semantics. Roughly
speaking, it suggests that tests in PDL-like roles can be eliminated by using
fixpoints outside roles. The result of this subsection states that tests can be
eliminated from TBoxes of the deterministic Horn fragment of ALCreg. This is
possible because the traditional semantics of such TBoxes has a fixpoint char-
acterization.

A role can be treated as a regular expression over the alphabet R+∪{C? | C is
a concept}, where t and ◦ stand for ∪ and semicolon, respectively. Conversely,
a word over this alphabet can be treated as a role. Given a role R, let L(R)
denote the regular language generated by R and let ∀∃R.C be a new concept
constructor whose semantics in an interpretation I is specified as follows:

(∀∃R.C)I =
⋂
{(∀S.∃S′.C)I | SS′ ∈ L(R)}.

Observe that, if R ∈ R+, then ∀∃R.C ≡ ∀R.C u ∃R.C.
The deterministic Horn fragment of ALCreg, denoted by D-Horn-ALCreg,

is designed with the intention to be (probably) the most expressive fragment
of ALCreg that has a PTime data complexity (under the traditional semantics).

A D-Horn-ALCreg TBox axiom is an expression of the form Cl v Cr, where
Cl and Cr are concepts defined by the following BNF grammar, with A ∈ C and
s ∈ R+:

Cl ::= > | A | Cl u Cl | Cl t Cl | ∃Rl.Cl | ∀∃Rl.Cl (2)

Rl ::= s | Rl ◦Rl | Rl tRl | R∗l | Cl? (3)

Cr ::= > | ⊥ | A | ¬Cl | Cr u Cr | ¬Cl t Cr | ∃Rr.Cr | ∀Rl.Cr (4)

Rr ::= s | Rr ◦Rr | Cr? (5)

A D-Horn-ALCreg TBox is a finite set of D-Horn-ALCreg TBox axioms.

Remark 1. A (reduced) ABox is a finite set of assertions of the form A(a), ¬A(a)
or r(a, b) (where A ∈ C and r ∈ R+). A knowledge base in D-Horn-ALCreg is a
pair 〈T ,A〉 consisting of a D-Horn-ALCreg TBox T and an ABox A. The notion
of whether an interpretation is a model of an ABox or a knowledge base is defined
in the usual way. A knowledge base is satisfiable if it has a model. It can be
proved that checking whether a given knowledge base 〈T ,A〉 in D-Horn-ALCreg
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is satisfiable is solvable in polynomial time in the size of the ABox A.3 That
is, D-Horn-ALCreg has a PTime data complexity. If ∀∃ in (2) is replaced by ∀,
then instead of D-Horn-ALCreg we obtain the general Horn fragment of ALCreg
with a NP-hard data complexity for the satisfiability problem.4 �

The following theorem states that tests can be eliminated from
D-Horn-ALCreg.

Theorem 2. For every D-Horn-ALCreg TBox T over a signature Σ, there ex-
ists a D-Horn-ALCreg TBox T ′ without tests over a signature Σ′ ⊇ Σ such
that:

1. for every model I of T , there exists a model I ′ of T ′ such that ∆I = ∆I
′

and xI = xI
′

for all x ∈ Σ,

2. for every model I ′ of T ′, the interpretation I over Σ specified by ∆I = ∆I
′

and xI = xI
′

for all x ∈ Σ is a model of T .

5 Conclusions

Generalizing the result and method of Berman and Paterson [2], we have proved
that there is a concept of ALCreg that is not equivalent to any concept of the
DL that extends ALCtrans with inverse roles, nominals, qualified number re-
strictions, the universal role and local reflexivity of roles. This implies, among
others, that CPDL (Converse-PDL) is more expressive than Test-Free CPDL,
and GCPDL (Graded Converse-PDL) is more expressive than Test-Free GCPDL.
Extending our result by applying the technique of [2], it can also be proved that
CPDLn+1 (CPDL with at most n+1 levels of nesting of tests) is more expressive
than CPDLn, and similarly for GCPDL.

The other results of this paper state that, on the other hand, using simple
stratified TBoxes under the stratified semantics on the background, it is possi-
ble to express every concept by another without tests. Furthermore, tests can
be eliminated from the deterministic Horn fragment D-Horn-ALCreg of ALCreg.
If one extends D-Horn-ALCreg with other features (e.g., I, O, Q, U and Self )
appropriately so that the resulting language still has a PTime data complexity
(cf. Horn-SHIQ [9], Horn-SROIQ [15] and Horn-DL [14]), then our elimination
technique (presented in the long version [11] of the current paper) can still be
applied. Besides, it is hard to define a fragment of ALCreg that is more expressive
than D-Horn-ALCreg and still has a PTime data complexity under the tradi-
tional semantics. So, we have a tendency to claim that tests can be eliminated
from tractable Horn fragments of PDL-like logics.

3 A more general result was proved in [13] for D-Horn-CPDLreg, which extends
D-Horn-ALCreg with inverse roles and regular RBoxes.

4 The hardness was shown for the general Horn fragment of ALC [12].
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