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Abstract. In the paper, we discuss an extension of exploration sys-
tems introduced by Andrzej Ehrenfeucht and Grzegorz Rozenberg. The
extension is defined by adding an interpretation of nodes and edges in
zoom structure of exploration system. The interpretation is based on the
concepts, namely local logic and logic infomorphism, from the notion
of information flow by Jon Barwise and Jerry Seligman. This extension
makes it possible, in particular, to give a natural interpretation of reac-
tion systems in exploration systems as tools for controlling attention in
reasoning about the perceived situation in the physical world.
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1 Introduction

In the paper, we present a preliminary discussion about possible links between
the exploration systems and the information flow approach.

The original motivation behind reaction systems (mostly taken from [1] and
[2]) was to model interactions between biochemical reactions in the living cells.
Therefore, the formal notion of reaction reflects the basic intuition behind bio-
chemical reactions. A biochemical reaction can take place if in a given state all
of its reactants are present and none of its inhibitors is present. When a reaction
takes place, it creates its products.

Zoom structures were introduced to integrate structure of a depository of
knowledge of a discipline of science (e.g., biology) in the context of reasoning



about the perceived situation related to reaction systems in the physical world.
A discipline of knowledge must be structured and the integrating structure here
is a well-founded partial order which is well suited to represent a hierarchical
structure of knowledge. Exploration systems combine the zoom structures with
the reaction systems that are “running within” zoom structures (see, e.g., [3, 4]).

We propose to extend exploration systems by adding interpretation of nodes
and edges of zoom structures. The interpretation of nodes of zoom structures,
in the form of labels of nodes, is defined by local logics (related to information
systems) [5]; the labels of edges in the zoom structure are interpreted as logic
infomorphisms between local logics labeling nodes linked by edges. Through
local logic it is possible to address a notion of reasoning with respect to local
knowledge. Logic infomprphisms can be treated as abstract representations of
communications between local logics because each of two local logics linked by a
logic infomorphism has some knowledge about facts derivable by the second one.
It is possible to treat exploration system as a distritbuted basis for reasoning
about the perceived situation related to biochemical processes running in the
physical world.

The content of the paper is organized as follows. In Sect. 2 we present the
basic concepts of reaction systems. Rudiments of the information flow approach
are included in Sect. 3. The zoom structures, exploration systems, and their
extension are discussed in Sect. 4.1.

2 Reaction Systems

In this section we recall some basic notions concerning reaction systems (mostly
taken from [1] and [2]). The original motivation behind reaction systems was to
model interactions between biochemical reactions in the living cells. This leads
to the following definitions.

Definition 1. A reaction is a triplet a = (Ra, Ia, Pa), where Ra, Ia, Pa are finite
nonempty sets with Ra ∩ Ia = ∅. If S is a set such that Ra, Ia, Pa ⊆ S, then a is
a reaction in S.

The sets Ra, Ia, Pa, are called the reactant set of a, the inhibitor set of a, and
the product set of a, respectively. Clearly, since Ra, Ia are disjoint and nonempty,
then if a is a reaction over S, then |S| ≥ 2. We will use rac(S) to denote the set
of all reactions over S.

The enabling of a (biochemical) reaction in the given state of a biochemical
system and the resulting state transformation are defined as follows.

Definition 2. Let T be a finite set

– Let a be a reaction. Then a is enabled by T , denoted by ena(T ), if Ra ⊆ T
and Ia ∩ T = ∅. The result of a on T , denoted by resa(T ), is defined by:
resa(T ) = Pa if ena(T ) and resa(T ) = ∅, otherwise.

– Let A be a finite set of reactions. The result of A on T, denoted by resA(T ),
is defined by: resA(T ) =

⋃
a∈A resa(T ).



The intuition behind a finite set T is that of a state of a biochemical system,
i.e., a set of biochemical entities present in the current biochemical environment.
Thus a single reaction a is enabled by state T if T separates Ra from Ia, i.e.,
Ra ⊆ T and Ia ∩T = ∅. When a is enabled by T , then its result on T is just Pa.
For a set A of reactions, its result on T is cumulative, i.e., it is the union of the
results of all individual reactions from A. Since reactions which are not enabled
by T do not contribute to the result of A on T, resA(T ) can be defined by

resA(T ) =
⋃
{resa(T )|a ∈ A and ena(T )}.

Now the central notion of a reaction system is defined as follows.

Definition 3. A reaction system is an ordered pair A = (S,A), where S is a
finite set such that |S| ≥ 2 and A ⊆ rac(S) is a nonempty set of reactions in S.

Thus a reaction system is basically a finite set of reactions over a set S, which
is called the background set of A and its elements are called entities. The result
function of A, resA : 2S −→ 2S is defined by resA = resA.

The behaviour of a reaction system (which results from the interactions be-
tween its reactions) is determined by its dynamic processes which are formally
defined as follows.

Definition 4. Let A = (S,A) be a reaction system and let n ≥ 1 be an integer.
An (n-step) interactive process in A is a pair π = (γ, δ) of finite sequences such
that γ = C0, . . . , Cn and δ = D0, . . . , Dn, where C0, . . . , Cn, D0, . . . , Dn ⊆ S,
and Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, . . . , n}.

The sequence γ is the context sequence of π and the sequence δ is the result
sequence of π. Then, the sequence τ = W0,W1, . . . ,Wn defined by Wi = Ci ∪Di

for all i ∈ {0, . . . , n} is the state sequence of π with W0 = C0 called the initial
state of π (and of τ). If Ci ⊆ Di for all i ∈ {1, . . . , n}, then we say that π (and
τ) is context-independent. Note that we can assume then that Ci = ∅ for all
i ∈ {1, . . . , n} without changing the state sequence.

Thus, an interactive process begins in the initial state W0 = C0 ∪ D0. The
reactions from A enabled by W0 produce the result D1 which together with
C1 forms the successor state W1 = C1 ∪ D1. The iteration of this procedure
determines π: for each i ∈ {0, . . . , n − 1}, the successor of state Wi is Wi+1 =
Ci+1 ∪Di+1, where Di+1 = resA(Wi).

The context sequence formalizes the intuition that, in general, a reaction
system is not a closed system and so its behavior is influenced by its environment.
Note that a context-independent state sequence is determined by its initial state
W0 and the number of steps (n). In general, for an n-step interactive process π
of A, π is determined by its context sequence and n.

Also, in a context-independent state sequence τ = W0, . . . ,Wi,Wi+1, . . . ,Wn,
during the transition from Wi to Wi+1 all entities from Wi − resA(Wi) van-
ish. This reflects the assumption of no permanency: an entity from a current
state vanishes unless it is produced/sustained by A. Clearly, if π is not context-
independent, then an entity from a current state Wi can be also sustained



(thrown in) by the context (Ci+1). This feature is also a major difference with
standard models of concurrent systems such as Petri nets (see, e.g., [6]).

3 Barwise and Seligman’s logic for distributed system

In [5], the formal counterpart of information available to different sources/agents,
including their prior knowledge, is captured through the notion of classification;
a classification specifies an agent’s information and knowledge regarding which
object satisfies which properties or is of which type. The formal definition is
given as follows.

Definition 5. A classification A = 〈Tok(A), Typ(A), |=A〉 consists of
(i) a set, Tok(A), of objects to be classified, called tokens of A,
(ii) a set, Typ(A), of properties used to classify the tokens, called the types of
A, and
(iii) a binary relation, |=A, between Tok(A) and Typ(A).

If a |=A α, then a is said to be of type α inA. That is, |=A basically specifies which
token is of which type. Following the literature of rough sets [7, 8], the notion
of classification, presented in [5], can be viewed as a special kind of information
system, which is a tuple (U,A, {Va}a∈A, {fa}a∈A) consisting of respectively sets
of objects, attributes, a set of values for each attribute, and a set of functions for
each attribute specifying which object satisfies which attribute with what value.
In the context of classification, U is basically Tok(A), {(a, v) : a ∈ A, v ∈ Va} is
Typ(A), and for u ∈ U , fa(u) = v can be associated with u |=A (a, v) for each
(a, v) ∈ Typ(A).

Now the notion of infomorphism, defined below, represents relationship be-
tween classifications, and provides a way of moving information back and forth
between them.

Definition 6. Let A = 〈Tok(A), Typ(A), |=A〉 and B = 〈Tok(B), T yp(B), |=B〉
be two classifications. An infomorphism f : A � B from A to B is a con-
travariant pair of functions f = (f̂ , f̌) such that f̂ : Typ(A) 7→ Typ(B) and
f̌ : Tok(B) 7→ Tok(A) satisfying the following fundamental property of infomor-
phisms.
f̌(b) |=A α iff b |=B f̂(α) for each b ∈ Tok(B) and α ∈ Typ(A).

The notion of an interpretation, sometimes also called a translation of one
language into another, is an example of infomorphism between classifications.
There are two aspects of an interpretation; one is to do with tokens (structures),
and the other is to do with types (sentences). An interpretation I : L1 � L2 of
languages L1 into L2 does two things. At the level of types, it associates with
every sentence α of L1, a sentence I(α) of L2, its translation. At the level of
tokens, it associates with every structure M for L2, a structure I(M) for L1.
The relation that I(M) |=L1

α iff M |=L2
I(α), presents that what I(α) says

about the structure M is equivalent to what α says about the structure I(M).



  

      L1 – sentences                                    L2 – sentences                  

L1 – structures                                  L1 – structures

╞ L1 ╞ L2

α I(α)

I

I(M)                                              M

Fig. 1. Interpretation: a translation of one language to another

Definition 7. Given the infomorphisms f : A� B and g : B � C, the compo-
sition
gf : A� C of f and g is the infomorphism defined by ĝf = ĝf̂ and ǧf = f̌ ǧ.

Given a classification of information, often it is found that some tokens are
identical with respect to some types, and distinct with respect to the rest. The
example, as given in [5], might render a better understanding in this regard.

My copy of today’s edition of the local newspaper bears much in com-
mon with that of my next door neighbour. If mine has a picture of Presi-
dent Clinton on page 2, so does hers. If mine has three sections, so does
hers. . . . Mine has orange juice spilled on it, hers does not. Hers has the
crossword puzzle solved, mine does not.

In the theory of classification, this aspect is captured by the following notions
of invariant and quotient classification.

Definition 8. Given a classification A, an invariant is a pair I = (Σ,R) con-
sisting of a set Σ ⊆ Typ(A) of types of A and a binary relation R between tokens
of A such that if aRb, then for each α ∈ Σ, a |=A α if and only if b |=A α.

In the above definition though R needs not to be an equivalence relation, in the
further considerations R is considered to be the smallest equivalence relation
containing the concerned relation.

Definition 9. Let I = (Σ,R) be an invariant on the classification A with respect
to an equivalence relation R. The quotient of A by I, denoted as A/I, is the
classification with types Σ, whose tokens are the R-equivalence classes of tokens
of A, and with [a]R |=A/I α if and only if a |=A α.

One can notice that the notion of invariance, as defined in [5], also corresponds
to the notion of indiscernibility in the context of rough set literature. In an
information system, given by the tuple (U,A, {Va}a∈A, {fa}a∈A), two objects
x, y of U are said to be indiscernible (i.e., xIND(A)y) if fa(x) and fa(y) receive
the same value from Va for any a ∈ A. Moreover, the notion of sequent, defined
below, also has a counterpart in rough set literature. A sequent can be viewed
as a non-deterministic decision rule, i.e., relation between two (finite) sets of



descriptors (e.g. (a, v) for a ∈ A and v ∈ Va) describing the available data of the
information system.

Example 1. For a given information system A=(U,A, {Va}a∈A, {fa}a∈A) and
the indiscernibility relation IND(A) one can define two classifications Cl(A) =
(U,Σ, |=A) and Cl(A/IND(A)) =(U/IND(A), Σ, |=A/IND(A)), where Σ is a
subset of Type(A) (cf. below Def. 5), x |=A α denotes that x satisfies α, and
[x]IND(A) |=A/IND(A) α means that x |=A α [7, 8]. One can easily check that
these two classifications can be linked by infomorphisms (id, g) : Cl(A) �
Cl(A/IND(A)), where id is the identity on Σ and g assigns to [x]IND(A) any
object from [x]IND(A) and (id, h) : Cl(A/IND(A)) � Cl(A), where id is the
identity on Σ and h(x) = [x]IND(A) for x ∈ U .

2

As pointed out in [5],

one way to think about information flow in a distributed system is
in terms of a ‘theory’ of the system, that is, a set of known laws that
describes the system.

Based on this general notion of classification, the notion of sequent or notion of
consequence of a deductive logic is captured as follows.

As a classification, say (Tok(A), T yp(A), |=A), specifies a perspective about
the properties of the Tok(A) we may call the classification as classification of A
considering A to refer to that particular perspective.

Definition 10. Let cl(A) = (Tok(A), T yp(A), |=A) be a classification of A.
(i) For any Γ,∆ ⊆ Typ(A), 〈Γ,∆〉 is considered to be a sequent of Typ(A).
(ii) A sequent 〈Γ,∆〉 is a partition of Σ′ ⊆ Typ(A) if Γ ∪∆ = Σ′ and Γ ∩∆ =
φ.
(iii) A binary relation ` between subsets of Typ(A) is called a (Gentzen) conse-
quence relation.
(iv) A theory T = (Σ,`) is a pair, where Σ ⊆ Typ(A) and ` is a consequence
relation on Σ.
(v) A constraint of the theory T is a sequent 〈Γ,∆〉 such that Γ ` ∆.
(vi) A token a of Tok(A) satisfies 〈Γ,∆〉 provided that if a is of type α for every
α ∈ Γ , then a is of type β for some β ∈ ∆. A token not satisfying a sequent is
called a counterexample to the sequent.
(vii) The theory T (cl(A)) = (Typ(A),`A) generated by cl(A) is the theory whose
constraints are the set of sequents satisfied by every token of Tok(A).
(viii) A theory whose constraints are satisfied by every token of the classification
is called a complete theory.

Here it is to be noted that sequents are all possible pairs of sets of types, and some
of them come under the consequence relation. Usually, some natural conditions
are imposed on the set of sequents if one would like to consider it as a theory.
Below we present such conditions in the definition of the regular theory.



Definition 11. A theory T = (Σ,`) is regular if it satisfies the following proper-
ties viz., identity, weakening, and global cut for all types α, and all set Γ, Γ ′, ∆,∆′,
Σ′, Σ0, Σ1 of types.
Identity α ` α
Weakening If Γ ` ∆, then Γ, Γ ′ ` ∆,∆′.
Global cut If Γ,Σ0 ` ∆,Σ1 for each partition 〈Σ0, Σ1〉 of Σ′, then Γ ` ∆.

Proposition 1. The theory T (cl(A)) = (Typ(A),`A) generated by the classifi-
cation cl(A) of A is a regular theory.

Proposition 2. Any regular theory T = (Σ,`) satisfies the following condition.
Finite cut: If Γ, α ` ∆ and Γ ` ∆,α, then Γ ` ∆.

Definition 12. Given two theories T1 = (Typ(T1),`T1) and T2 = (Typ(T2),`T2),
a (regular theory) interpretation f : T1 7→ T2 is a function from Typ(T1) to
Typ(T2) such that for each Γ,∆ ⊆ Typ(T1) if Γ `T1

∆, then f(Γ ) `T2
f(∆).

The notion of local logic puts the idea of a classification together with that
of a regular theory. Moreover, introducing a notion of normal tokens it models
resonable but unsound inferences.

Definition 13. A local logic L = (Tok(L), T yp(L), |=L,`L, NL) consists of
(i) a classification cl(L) = (Tok(L), Typ(L), |=L),
(ii) a regular theory Th(L) = (Typ(L),`L), and
(iii) a subset NL ⊆ Tok(L), called the normal tokens of L, which satisfies all
the constraints of Th(L).

Definition 14. A logic infomormhism f : L1 � L2 consists of a contravariant
pair f = (f̂ , f̌) of functions such that
(i) f : cl(L1) � cl(L2) is an infomorphism of classifications,

(ii) f̂ : Th(L1) 7→ Th(L2) is a theory interpretation, and
(iii) f̌(NL2) ⊆ NL1 .

It can be observed that through these notions of classification, local logic, and
logic infomorphism the target of the authors [5] was to formalize respectively
an individual’s information base, logical reasoning base, and flow of information
from one individual to another in the process of decision making.

4 Exploration Systems and Their Extension Grounded in
Local Logics over Information Systems

In this section, we consider exploration systems which combine zoom structures
with reaction systems “running within” zoom structures (see, e.g., [3, 4]). The
original intuition and motivation was that a zoom structure is the integrating
structure of a depository of knowledge of a discipline of science (e.g., biology).
A discipline of knowledge must be structured and the integrating structure here



is a well-founded partial order which is well suited to represent a hierarchical
structure of knowledge (as, e.g., is the case in biology).

Formally zoom structures are defined as follows (we consider irreflexive par-
tial orders; recall that a partial order is well-founded if every walk against its
edges is finite).

Definition 15. A zoom structure is a 6-tuple Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆),
where

(i) D is a non-empty set,
(ii) E ⊆ D × D is such that the E+ (i.e., the transitive closure of E) is a

well-founded partial order,
(iii) Γ,∆ are finite sets,
(iv) {Di}i∈Γ is a partition of D (into non-empty sets), and
(v) {Ej}j∈∆ is a partition of E (into non-empty sets).

Obviously, Z can be also seen as a node- and edge-labelled graph, where D
is its set of nodes labelled by elements of Γ , and E is its set of edges labelled by
elements of ∆.

Data structures for implementing large sets of data are often hierarchical: in
accessing specific data one usually performs a series of zoom operations each of
which leads from a topic to its “subtopic.” This is reflected in the basic notion
of an inzoom of Z.

Definition 16. Let Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆) be a zoom structure.
An inzoom of Z is a finite sequence x = x1, x2, . . . , xn such that n ≥ 2, xi ∈ D
for i ∈ {1, . . . , n}, and, for each i ∈ {2, . . . , n}, (xi, xi−1) ∈ E.

The set of inzooms of Z is denoted by INZOOM(Z).
Thus an inzoom represents a “reverse walk” in Z, i.e., a walk through nodes

such that each single step goes against an edge of E. In the framework of zoom
structures, inzooms (rather than nodes) are basic units for reasoning about and
the usage of zoom structures.

While a zoom structure represents the static integrating structure of a depos-
itory of knowledge, the dynamic processes of exploring depositories of knowledge
are represented by reaction systems “embedded” (rooted) in zoom structures.
The embedding of a reaction system in a zoom structure is realized by requir-
ing that the background of the reaction system consists of inzooms of the zoom
structure.

Definition 17. Let Z be a zoom structure. A reaction system A = (S,A) is
rooted in Z if S ⊆ INZOOM(Z).

Recall that a reaction systemA = (S,A) specifies, through the result function
resA, a set-theoretical transformation of the set of subsets of its background set
S (hence on the states of A). (When one allows processes of A to be more general
than context-independent, then more general transformations are considered.)
The background set can be any set and if we choose it to be a set of zooms of



Z, then we root A in Z, “ allowing” A to explore (the knowledge deposited in)
Z.

This leads to the notion of an exploration system.

Definition 18. An exploration system is an ordered pair E = (Z,F), where Z
is an extended zoom structure and F is a family of reaction systems rooted in Z.

In the original definition (see [3]) Z is a construct more general than a zoom
structure. However, for the purpose of our discussion it suffices to assume here
that Z is a zoom structure.

Exploration systems can be used for reasoning about perceived situation in
the physical world. Note that objects in D do not have to belong to the ground
level of hierarchical modeling obtained by sensory based perception of reality.
They can be constructs of higher level of the hierarchical modeling for perception
based reasoning about the currently perceived situation. Moreover, edges in E
can be interpreted as links representing possible relevant interactions between
objects from D. This means that results of interactions can be used in perception
based reasoning about the currently perceived situation.

Example 2. Let Z = (D,E, Γ,∆, {Di}i∈Γ , {Ej}j∈∆) be a zoom structure such
that D = {x1, x2, . . . , x10}, Γ = {1, 2, 3}, ∆ = {4, 5, 6}, D1 = {x1, x2, x3}, D2 =
{x4, x5, x6, x7}, D3 = {x8, x9, x10}, E = E4 ∪E5 ∪E6, E4 = {(x5, x7), (x8, x10),
(x1, x4), (x3, x5)}, E5 = {(x6, x7), (x4, x7), (x2, x3)}, and E6 = {(x5, x10), (x1, x3),
(x1, x2), (x3, x8), (x9, x10)} (see Figure 2). It is illustrated in Figure 2.

Let A = (S,A) be a reaction system rooted in Z such that S = {(x3, x2, x1),
(x3, x1), (x3, x2), (x2, x1), (x7, x4), (x10, x8)} and A contains the reaction a =
(Ra, Ia, Pa) withRa = {(x3, x2, x1), (x2, x1)}, Ia = {(x10, x8)}, and Pa = {(x7, x4)}.
This gives an example of a reaction system rooted in a zoom structure.

4.1 Exploration Systems Grounded in the Space of Information
Systems

We propose to extend exploration systems by adding interpretation of nodes
and edges of zoom structures. The interpretation of nodes of zoom structures
is given in the form of labels of nodes defined by local logics (related to infor-
mation systems) [5] and interpretation of edges in the zoom structure are logic
infomorphisms between local logics labeling nodes linked by the edges.

Having such a framework, following the information flow approach [5] one can
construct local logics for individual agents as well as local logic representing the
whole network of local logics. However, such a global logic will be very complex
what makes it hardly possible to derive efficiently conclusions of the basis of such
a local logic. Moreover, due to the cumulation of uncertainties the reasoning on
the basis of such a logic may be not satisfactory.

Instead of this we propose to construct local logics only for some fragments
of zoom structures which are relevant for the perceived situation. Namely, we
propose to construct local logics corresponding to subnetworks defined by the
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Fig. 2. Zoom structure from Example 2.

partition of nodes given by a zoom structure (representing subdomains of knowl-
edge). It should be noted that the partition blocks can be further restricted
by using reactants of relevant reactions from exploration system. In the conse-
quence, the fragments of networks for which it is necessary to construct locals
logic representing them is substantially reduced. The aim is to make the reason-
ing process efficient and leading to conclusions on the perceived situation. The
products of reactions from the considered exploration system are used as point-
ers indicating relevant fragments of zoom structure. These fragments are used
in further steps of reasoning on the basis of local logics toward understanding
the perceived situation.

There is one more extension we propose to the zoom structure defined above.
This is specified by a selection function making it possible to select, from the
family of reaction systems given in the considered exploration system, a rele-
vant reaction system, for the next step of reasoning on the basis of the current
information on the currently perceived situation. We assume here that this in-
formation is represented, in particular, in a distinguished nodes (called sensory
nodes) of extended zoom structure, where information systems and correspond-
ing to them local logics are labeling nodes.

5 Conclusions

We presented a preliminary discussion about extension of exploration systems
defined in [3, 4]. In the full version of the paper we plan to give more details
about this extension and its possible applications.

In our further research, we plan to consider the exploration systems as dy-
namic complex networks with the structures changing by the control mechanisms



responsible for the behavior of exploration systems. The control of an agent, us-
ing a given exploration system interacting with the environment, is aiming to
satisfy the ’needs’ of the agent. It should be noted that the needs may change
with time. One may ask how such complex exploration systems may be con-
structed and modified with time. Here, we would like to point to two special
strategies following two kinds of judgments used for making changes in the cur-
rent exploration system. The first one is based on aggregation of information
systems labeling nodes of zoom structures of these exploration systems and con-
sequently the local logics corresponding to them. The aggregations are such as
operations of join of information systems with some relevant constraints. These
constraints are used to filter Cartesian products of sets of objects in the joint
information systems to obtain relevant computational building blocks (granules)
for describing the perceived situation, e.g., the ones which are used for approxi-
mation of complex vague concepts responsible for triggering action or plans (see,
e.g., [9]). The second kind of strategies is based on the ability of agents to create
the so called complex granules making it possible to extend the fragments of
the physical world, perceived by agents, to the new fragments localized in the
scope of these complex granules (see, e.g., [10–12]). More detailed discussion on
the issues related to dynamic behavior of exploration systems will be included
in our next papers.
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