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Abstract

Tokenization is the process of splitting run-
ning texts into minimal meaningful units. In
writing systems where a space character is
used for word separation, this blank charac-
ter typically acts as token boundary. A simple
tokenizer that only splits texts at space char-
acters already achieves a notable accuracy,
although it misses unmarked token bound-
aries and erroneously splits tokens that con-
tain space characters.

Different languages use the same characters
for different purposes. Tokenization is thus
a language-specific task (with code-switching
being a particular challenge). Extra-linguistic
tokens, however, are similar in many lan-
guages. These tokens include numbers, XML
elements, email addresses and identifiers of
concepts that are idiosyncratic to particular
text variants (e.g., patent numbers).

We present a framework for tokenization that
makes use of language-specific and language-
independent token identification rules. These
rules are stacked and applied recursively,
yielding a complete trace of the tokenization
process in form of a tree structure. Rules
are easily adaptable to different languages and
test types. Unit tests reliably detect if new to-
ken identification rules conflict with existing
ones and thus assure consistent tokenization
when extending the rule sets.

In: Mark Cieliebak, Don Tuggener and Fernando Benites (eds.):
Proceedings of the 3rd Swiss Text Analytics Conference (Swiss-
Text 2018), Winterthur, Switzerland, June 2018

1 Introduction

Common wisdom has it that tokenization is a solved
problem. Yet, in practice, we often find ourselves in
bothersome trials of adapting tokenizers or their out-
put. This may be due to the fact that “down-stream”
processing tools require a different tokenization. Or it
may be because of special tokenization needs for par-
ticular domains, genres or historical text variants.

As an example of different tokenization needs, con-
sider splits of English negations in contracted forms
like didn’t and won’t . The Penn Treebank guidelines
suggest to tokenize those as did + n’t and wo + n’t .
Such splits are practical for information extraction or
sentiment analysis. But, of course, these splits make
searching a corpus (e.g. for linguistic investigations)
for negated forms unintuitive. Searches must then be
supported by a specific module that undoes the splits.

Another example is the English phrase
a 12-ft boat . How shall we handle the hyphen-
ated length expression? Is this one or two or even
three tokens? We follow the rule that measurement
units are split from numerical values. This rule is
meant for altitude or speed and says that the number
is split from the unit (e.g. 2850m → 2850 , m ;
155km/h → 155 , km/h ). Following this rule, we
decided to also split the hyphenated length expression
into two tokens resulting in: a , 12 , -ft , boat . Once
identified as such, we can, of course, keep numerical
values and measurement units as single tokens, if
required by the following processing step.

We work on the annotation of large multilingual
corpora, some of them diachronic for the last 150
years. In our work such tokenization issues abound.
We have therefore developed tokenization guidelines
which started out as check-lists for the various lan-
guage versions of our corpora. We then realized that
only a custom-built tokenizer with systematic tests in-
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cluded will serve our purposes of high-quality tok-
enization.

Our tokenization approach does not include nor-
malization, which we see as a separate step involv-
ing coding issues (like turning ligatures into letter se-
quences, or certain spaces into non-breakable spaces)
or other simplifications (like turning American into
British English spelling, or Swiss German into Stan-
dard German spelling).

In this paper, we first describe existing tokenization
approaches and show that there is a need for tokeniz-
ers that can be adapted to particular language and text
variants (Section 2). We then show why tokenization
is a challenging task by giving examples of ambiguous
cases. We argue that a tokenizer needs to possess lin-
guistic information and to consider long-distance rela-
tions to be able to decide those cases (Section 3).

Having outlined the problem, we describe our tok-
enization approach (Section 4), and how we employ
unit testing to warrant high-quality tokenization while
allowing for the adaptation of the tokenizer (Sec-
tion 5). Finally, we show that there are cases where
tokenization decisions require commonsense knowl-
edge, and which our tokenizer is not capable to handle
(Section 7). Future development (Section 8) will need
to involve syntactic parsing to solve those hard cases.

2 Related Work
The Stanford Tokenizer (Manning et al., 2018) is prob-
ably the most widely used tokenizer for English. It is
built on the basis of the tokenization rules in the Penn
Treebank.1 Following the Penn tokenizations gets us a
long way for English, but is not explicit enough to ad-
dress issues such as in the hyphenated length expres-
sions above, a 12-ft boat .

Its strength is its speed and the numerous options
concerning the treatment of special symbols (paren-
theses, ampersand, currency symbols and fractions).
In contrast, our tokenizer is highly modular and adapt-
able to categories of texts that we did not consider
when compiling our guidelines. It also allows for a
combination of rule sets from different languages to
process texts with quotations or code switching, for
instance.

He and Kayaalp (2006) compare various tokeniz-
ers for the biomedical domain. Their results point

1ftp://ftp.cis.upenn.edu/pub/treebank/public_
html/tokenization.html

to the need for standard tokenizers in order to ensure
the interoperability of processing tools. Cruz Díaz
and Maña López (2015) follow up with an analysis
of more recent tokenizers also for the biomedical do-
main. They observe disagreement to a large extend
between the tokenization decisions of those tools for
the test cases they had identified preliminarily. That
observation is in agreement with Habert et al. (1998),
when they concluded more than 15 years earlier “At
the moment, tokenizers represent black boxes, the be-
havior and rationale of which are not made clear.”

Apart from rule-based tokenization, there are ma-
chine learning approaches to tokenization as well. For
those approaches, a certain amount of training mate-
rial (i.e., both original and tokenized versions of the
same texts) is required. Jurish and Würzner (2013) ar-
gue that sufficient training material could be extracted
from “treebanks or multi-lingual corpora”.

3 Tokenization Challenges
Although the only decision to be taken by the tokenizer
is whether or not to place a token boundary between
each two adjacent characters, this task is not as triv-
ial as it seems at first glance. If two adjacent charac-
ters are both letters, they typically belong to the same
token. English negations in contracted forms (like
didn’t ) as described above are one exception.
A non-letter character (e.g., a punctuation mark)

followed by a letter frequently marks the boundary of
two tokens, while the opposite case (a letter charac-
ter followed by a non-letter character) does not show
a general preference; the right decision in these cases
often requires to resort to linguistic knowledge. We
can, for instance, not decide if baby’s is one token or
two without knowing whether a text is written in En-
glish ( ’s is a possessive marker of baby ) or Dutch
( baby’s means babies).

Apart from knowing a text’s language, which
includes word formation and grammar knowledge,
sometimes long-distance relations between tokens that
belong together, such as brackets or quotation marks,
have to be determined in order to take the right de-
cision. An apostrophe following a German word
that phonetically ends in /s/ can be both a possessive
marker or the end of a single-quoted expression. If we
find another apostrophe in the same sentence preced-
ing the ambiguous one such that it is followed imme-
diately by a letter-character and preceded by a space
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Figure 1: German sub-clause “da ich die Veranstaltung 'Kulturstadt Europas' für ein richtiges 'Ei des Kolumbus'
halte” with typewriter apostrophes as tokenization tree. Every node represents a single decision of the tokenizer.
Example taken from (Graën, 2018, p. 31).

character, we have evidence for the quoted expression
and consequently mark both apostrophes as single to-
kens (see Figure 1).2

In many languages, both sentences and abbrevia-
tions typically end with a period. While the sentence-
final period is a single token, abbreviations comprise
the period. To distinguish both cases, we either need
to know all abbreviations of the language in questions.
Or we need a reliable way of determining sentence
boundaries.

4 The Cutter Implementation

Simple tokenizers process text as a stream of charac-
ters from left to right and take locally justified deci-
sions of whether to place a token boundary between
two adjacent characters. This approach is limited as
it is not capable of taking long-distance relations into
account.

Our approach is to successively identify tokens fol-
lowing an ordered list of patterns defined by advanced
regular expressions.3 Once identified, we ‘cut out’
the token (hence the name Cutter) and proceed by ap-
plying the same patterns to the remaining parts, until
only empty character sequences remain. This proce-
dure generates a tree structure like the ones in Figure 1
and Figure 2.

The order of patterns that describe tokens and their
respective context is chosen such that the more de-
tailed or exceptional tokens are identified first, fol-
lowed by more common and standard tokens. That
way, sequences of characters that would otherwise be

2This is only necessary if the single typewriter apostrophe is
used instead of the proper left and right single quotation marks.

3We use the so-called Perl Compatible Regular Expressions
(PCRE) by (Hazel, 1997), including adjuvant features, such as
Unicode character properties (The Unicode Consortium, 2017),
named capturing subpatterns and subpattern assertions.

split into several tokens can be protected by an ear-
lier match, which prevents that sequence from further
processing.

Tokens that contain spaces, for instance, need to be
matched by a pattern that prevents them from being
split by the general rule which mandates that spaces
(and other white space characters) are token separa-
tors. For ease of reading, numbers are often separated
into groups of three digits. The international standard
for “quantities and units” stipulates the use of a small
space as separator (ISO 80000-1, 2009, Section 7.3.1),
which is often realized as a standard space in electronic
texts. We identify numbers formatted in this way (e.g.,
50 000 ) as single tokens.
Another example for tokens that need to be pro-

tected are French words originally composed of
more than one lexical unit that nowadays form
a single lexical unit and should thus be recog-
nized as a single token. In the example shown in
Figure 2, aujourd’hui ‘today’ is identified as to-
ken in the first step, leaving On nous dit qu’ and
c’est le cas, encore faudra-t-il l’évaluer. as remain-
ders, which are subsequently further tokenized. To be
able to distinguish lexicalized forms (e.g., d’accord
→ d’accord ) from regular elision of vowels (e.g.,
d’accorder → d’ , accorder ), we need to incorporate
all lexicalized forms (e.g., entr’ouvèrt , c’est-à-dire ,
presqu’île ) into the patterns that constitute our (tok-
enization) language model.

In addition to the linguistic information encoded in
patterns, our tokenizers uses two word lists per lan-
guage. The first one has abbreviations in order to mark
their occurrences in the text as single tokens. The
second one consists of sentence-initial words, that is,
words that do not start with a capital letter except in
sentence-initial position, such as preposition or deter-
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Figure 2: Tokenization tree of the French sentence “On nous dit qu’aujourd’hui c’est le cas, encore faudra-t-il
l’évaluer.”. Example taken from (Graën, 2018, p. 31).

miners. When we locate a word from this list in the
text, we mark it as potential sentence starter, which in
particular contexts leads to a special empty token that
marks a sentence boundary. Sentences can be split at
those markers, if no prior sentence segmentation has
been performed.4

Pattern identification rules are composed of a list
of named capturing subpatterns (see Hazel, 1997) that
extend to the whole text provided (i.e., they are an-
chored both at the beginning and at the end of the text).
We distinguish between the actual token or tokens that
are identified by a rule (e.g., , in Figure 2) and the re-
mainders that await further processing ( est le cas and
encore faudra in Figure 2). A typical rule consists of
a left part, the actual token and a right part (see root
node in Figure 2), though it can also identify more to-
kens (see root node in Figure 1).

Some examples: Date expressions, for instance,
typically consist of a number of tokens (e.g.,
12. , und , 13. , Juni , 2018 ); pronouns in some
Romance languages can be concatenated (e.g.,
No vull posar-n’hi. → No vull posar , -n’ , hi ,
. ; Sim, dir-lhes-ia isso. → Sim, dir , -lhes , -ia ,
isso. ). Each identified pattern is assigned a tag,
which marks the corresponding language (if the rule
is language-dependent), the rule name, a running
letter (if there is more than one rule for the same
target) and a running number (if a rule identifies more
than one token).

4If a sufficiently large corpus exists for the language and text
variant in question, methods to learn sentence boundaries from the
corpus such as (Kiss and Strunk, 2006) may perform better.

We envisage that our Cutter applies the language-
independent rules together with the rules for a partic-
ular language to a text whose language is known and
uniform. Beyond that, rule sets of different languages
can be combined in case of code switching. Various
rule sets for the same language (e.g., for different text
variants) can also be combined individually.

5 Unit Testing
The architecture of our tokenizer has a modular de-
sign to facilitate its adaptation to different user needs.
Towards this goal, we need to check that new rules do
not interfere with existing ones. Following the method
of unit testing, widely-used in software development,
we collect text snippets for each nontrivial tokeniza-
tion problem. We then provide information on correct
tokenization of those snippets according to our guide-
lines. To make a unit test pass, our tokenizer needs to
perform tokenization exactly like indicated.

If a unit test fails, the error can be either in the test or
in the rules. A test error can be based on contradictory
or unachievable tokenization guidelines (i.e., requir-
ing commonsense knowledge) or an incomplete man-
ual tokenization (e.g., the annotator missed a comma).
A rule error typically results from a rule being too re-
strictive or another rule being too general and thus er-
roneously matching the unit test in question.

In both cases, iterative improvement of tests or rules
(or both) finally leads to a configuration where all tests
pass, which is the objective of unit testing and, in our
case, guarantees that a deterioration of tokenization
quality by reason of language model changes are de-
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tected immediately and can be traced back to a partic-
ular change.

6 Evaluation
Aside from the implicit evaluation of our unit tests,
all of which we require to pass, we tested the perfor-
mance of our tokenizer on gold-tokenized texts. Such
gold-standard texts together with their original (unto-
kenized texts) are not easy to obtain. Corpora are typ-
ically available as raw texts, while treebanks typically
feature the manually determined tokens, but not the
original, untokenized material. Jurish and Würzner
(2013) approach this problem with de-tokenization
rules and a manual correction in particular cases.

We built a test corpus based on the SMULTRON
treebanks (Gustafson-Capková et al., 2007; Volk et
al., 2010), for which we have the original texts. Us-
ing those treebanks for comparison with the output of
our tokenizer is problematic, however, since the to-
kenization guidelines that our tokenizer implements
originate, among others, from the experiences in the
creation of these very treebanks. Notwithstanding
the expected bias, we select those sentences from the
treebanks which we can identify in the original texts
(1528 unique sentences in total) by simply ignoring
any whitespace characters.5 This selection comprises
1173 sample sentences in four languages: English
(67), German (388), Spanish (184) and Swedish (534).

An initial tokenization with Cutter yields 59 sen-
tences with errors (0.5%).6 In more than half of these
cases, the tokenization in the treebank deviates from
the pattern stipulated by the tokenization guidelines.
Another frequent issue is that the textual source does
not correspond to the text in the original document,
which comprises missing or superfluous whitespaces
and the representation of images as characters (see
Figure 3).

Figure 3: The ‘up’ and ‘down’ key symbols in this
detail from a DVD player manual are represented as
circumflex diacritic and letter ‘v’, respectively: eller
med ^/v-knapparna på fjärkontrollen.

5From our point of view, a tokenizer is only allowed to remove
input characters, not to alter them.

6Only the first error found in a sentence is counted.

We correct apparent anomalies in the input sen-
tences and remove sentences that cannot regularly be
represented as text, which are all key symbols, such
as the one shown in Figure 3. That way, we obtain a
small tokenization gold standard. It comprises 1165
sentences in the aforementioned four languages.

When we tokenize the tests obtained from the gold
standard sample sentences with our tokenizer, we still
see an error rate of 1%. By adjusting the existing rules
to include borderline cases (e.g., including the ± sign
into the definition of numbers), we couldmake all tests
pass. The error rate of two other popular tokenizers,
the ones in the NTLK7 and the Spacy8 NLP toolkits,
is at approximately 12%.9 The comparatively high er-
ror rate is due to both real tokenization errors, such as
splittingURLs, XML tags and ordinal numbers in Ger-
man,10 and, of course, debatable tokenization rules.
Should the German adjective 100%ige be left as one
token (Spacy), or be split into two tokens ( 100 , %ige ;
Cutter) or three tokens ( 100 , % , ige ; NLTK)?

7 Features and Limitations
Rule-based approaches in natural language process-
ing have widely been replaced by machine learning
approaches, since the latter are capable of handling
unanticipated situations by abstraction from observed
patterns. For tokenization of standard texts in well-
resourced languages, machine learning approaches
such as (Jurish andWürzner, 2013)might have enough
data from which to learn those patterns. For particu-
lar text categories and low-resourced languages, how-
ever, providing the algorithm with sufficient training
data will require a substantial effort.

In our work with corpora in several languages, the
best approach turned out to be an iterative one. For
a new language, we start with an empty rule set (in
addition to the language-independent rules) and apply
it to the untokenized texts. We subsequently gener-
ate unit tests from the errors that surfaced in manual
inspection, which we then address by defining corre-
sponding patterns (also consulting grammar books and
treebanks, if available). Few iterations of this proce-

7https://www.nltk.org/
8https://spacy.io/
9The Spacy tokenizer has only been evaluated on English, Ger-

man and Spanish sentences as it has no model for Swedish.
10The Spacy tokenizer also consequently splits compound ad-

jectives and nouns in English (e.g., low-cost, medium-voltage,
break-even), while the NLTK tokenizer alters all quotation marks.
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dure lead to a collection of rules and tests, and lower
the tokenization error rate considerably.

For languages that have treebanks or sentence-
segmented corpora, we can automatically extract
sentence-initial words and add them to our list, if they
do not appear with a capital letter in other positions;
we might also want to filter for closed word classes
(i.e., preposition, pronouns, etc.) here. If no resource
for gathering abbreviations is available, we need to
search for abbreviations in the given texts.

In contrast to machine learning approaches, erro-
neous tokenization decisions in our system can always
be traced back to a particular pattern, which facilitates
a quick remedy. The language model, however, is in-
evitably incomplete and requires testing and adapta-
tion ahead of its application to new text variants.

As mentioned above, some tokenization decisions
require a deeper understanding than what a sequence
of characters can provide. This is, for instance, the
case when abbreviations (without the period) coincide
with another word. We are only aware of German ex-
amples such as Abt. for Abteilung ‘department’ vs.
Abt ‘abbot’ or Art. for Artikel ‘article’ vs. Art kind.
Even if we address this problem by excluding those
words from the abbreviation list andmatch themwith a
dedicated rule that expects a succeeding number (e.g.,
in Abt. 3 ‘in department 3’; nach Art. 25 ‘pur-
suant to article 25’), we can still come up with cases
that cannot be solved without dictionary lookups or
parsing. Compare, for instance:

1. Wir trafen den Abt. Bergbahnen sind seine Lei-
denschaft.
‘We met the abbot. Mountain railways are his
passion.’

2. Wir sahen den Sprecher der Abt. Bergbahnen und
Wanderwege.
‘We saw the spokesman of the dept. of mountain
railways and hiking trails.’

Splitting undirected quotation marks (") results in
an information loss.11 After tokenization, it can no
longer be inferred whether such a quotation mark sig-
nals the beginning or the end of a quotation. A more
careful tokenizer needs to preserve the information

11The same is true for typewriter apostrophes (') as a replace-
ment of matching single quotation marks.

whether the quotation mark was split from the previ-
ous or from the following word. Our tokenizer pro-
vides the option to alternatively return or suppress
white space tokens.12

8 Conclusions and Future Development

To overcome ambiguous cases, we propose to extend
the shallow processing of the tokenizer by a syntactic
parser, to select the more likely tokenization. To this
end, tokenization has to be performed several times
with alternating rules. Parsing likelihood as decision
maker is only required if different results are obtained.
For low-resourced languages where no parser exists,
a heuristic based on the identification of finite verb
forms could suffice.

Rules are currently organized in sets, one for each
language and one for language-independent rules.
Each set comprises different stages, which are used to
interconnect different sets. Corresponding quotation
marks, for instance, need to be identified before any
token in between them splits the sentence into smaller
parts. Language-specific date expressions (e.g., with
ordinal numbers expressed as digits plus a period)
need to be processed before the language-independent
identification of numbers takes place.

We think that instead of a limited list of stages, a
more dynamic data structure would be beneficial. We
already knowwhich rules interfere (e.g., numbers with
spaces vs. spaces as separators), but this is not explic-
itly reflected in the data. If we were to reorganize the
tokenization rule sets by means of a “before” relation
between pairs of rules, we could build a rule depen-
dency graph, which, serialized, would define the order
of rules to apply. In case of code-switching sentences,
the order of languages given would be decisive if no
order is enforced by that graph.

We have used the tokenizer ourselves in a number
of projects. It supports several European languages,
including Romansh as a low-resourced language, and
more languages are in preparation. The tokenizer and
all our languagemodels are freely available.13 We also
provide a web demo and a tokenization web service.

12A sample sentence with whitespace tokens looks like this:
Suot , , il , , titel , , " , vacanzas , , e , , cultura , " ,
, as , , prouva , , d’ , eruir , , la , , funcziun , , da , ,
la , , lingua , , e , , cultura , , rumauntscha , , per , ,
il , , turissem , , i , ’l , , Grischun , .

13http://pub.cl.uzh.ch/purl/cutter
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