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Abstract. The similarities between Description Logics (DLs) and Set Theory

can be exploited to introduce in DLs a power-set concept and to allow for (possi-

bly circular) membership relationships among arbitrary concepts. In this abstract,

we describe the main ideas underlying the definition of ALCΩ , a description

logic combining ALC with Ω, a very rudimentary axiomatic set theory, consist-

ing of only four axioms characterizing binary union, set difference, inclusion,

and the power-set. In ALCΩ , concepts are naturally interpreted as sets living in

Ω-models. The power-set concept and the membership axioms among concepts

give useful metamodeling capabilities to the language.

1 Introduction

The relationships between Description Logics (DLs) and Set Theory are strong. If not

for other reasons, just considering the fact that concepts in DLs are interpreted as sets

of domain elements and that the basic concept constructs in DLs, namely intersection,

union and complement, are the very basic notions of any (axiomatic) set theory.

We aim at enhancing the relations between DLs and the Set Theory, by considering

the very simple axiomatic set theory Ω—consisting of only four axioms characterizing

binary union, set difference, inclusion, and the power-set—and extending DLs with new

constructor for concepts, the power-set and the set-difference constructs, as specified in

Ω. In addition, we want to use concept membership axioms of the form C ∈ D, stating

that the concept C is an instance of concept D, and role membership axioms of the form

(C,D) ∈ R, stating that concept C is in relation R with concept D. This extension is

very natural considering that concepts can be interpreted as sets living in Ω-models,

where each set can only have other sets as elements.

Furthermore, we do not require sets to be well-founded, as in [15, 13], and therefore

we open up to the possibility of having a concept as an instance of itself: C ∈ C1. For

instance, considering an example taken from [16, 12], using membership axioms, we

can represent the fact that eagles are in the red list of endangered species, by the axiom

Eagle ∈ RedListSpecies and that Harry is an eagle, by the assertion Eagle(harry). We

could further consider a concept notModifiableList, consisting of those list that can-

not be modified (if not by, say, a specifically enforced law) and, for example, it would be

1 Self membership is already allowed for concept names in [12], by assertions of the form a(a).



reasonable to ask RedListSpecies ∈ notModifiableList . However, more interestingly,

we would also clearly want notModifiableList ∈ notModifiableList .

The power-set concept, Pow(C), allows us to talk about all possible sub-concepts

of a given concept C visible in the domain, and it allows us also to capture—in a natural

way—the interactions between concepts and metaconcepts. Considering again the ex-

ample above, the statement “all the instances of species in the Red List are not allowed

to be hunted” can be represented by the concept inclusion axiom: RedListSpecies ⊑
Pow(CannotHunt), meaning that all instances of the classes in the RedListSpecies

(as Eagle) are included in CannotHunt .

Motik has shown in [12] that the semantics of metamodeling adopted in OWL-Full

leads to undecidability already for ALC-Full, due to the free mixing of logical and met-

alogical symbols. In [12], limiting this free mixing but allowing names to be interpreted

as concepts and to occur as instances of other concepts, two alternative semantics (the

Contextual π-semantics and the Hilog ν-semantics) are proposed for metamodeling. De-

cidability of SHOIQ extended with metamodeling is proved under either semantics.

As shown in [12], the meaning of the sentence above could be captured by combining

the ν-semantics with SWRL [10], but not by the ν-semantics alone.

Starting from [12], many other approaches to metamodeling have been proposed

in the literature. Most of them [4, 9, 11, 8] are based on a Hilog semantics, while [15,

13] define extensions of OWL DL and of SHIQ (respectively), based on semantics

interpreting concepts as well-founded sets. Here, we propose an extension of ALC with

power-set concepts and membership axioms among concepts, whose semantics is natu-

rally defined using sets living in Ω-models (which are not necessarily well-founded).

In the following we shortly describe an extension of ALC, ALCΩ , including the

power-set concept and concept membership axioms, which we have proved to be decid-

able by defining, for any ALCΩ knowledge base K , a polynomial translation KT into

ALCOI , exploiting the correspondence studied in [3] between the membership rela-

tion in the set theory and a normal modality. From the translation in ALCOI we obtain

an EXPTIME upper bound on the complexity of satisfiability in ALCΩ . Interestingly

enough, our translation has strong relations with the first-order reductions used in [7, 9,

11]. An extended version of this work will appear in [5].

2 The theory Ω

The first-order theory Ω consists of the following four axioms in the language with

relational symbols ∈ and ⊆, and functional symbols ∪, \, Pow :

x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z;

x ∈ y\z ↔ x ∈ y ∧ x 6∈ z;

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y);

x ∈ Pow (y) ↔ x ⊆ y.

In an Ω-model everything is supposed to be a set. Hence, a set will have (only) sets

as its elements and circular definition of sets are allowed (such as a set admitting itself

as one of its elements). Moreover, not postulating in Ω any link between membership



∈ and equality—in axiomatic terms, having no extensionality (axiom)—Ω-models in

which there are different sets with equal collection of elements, are admissible.

The most naturalΩ-model—in which different sets are, in fact, always extensionally

different—is the collection of well-founded sets HF = HF
0 =

⋃
n∈N

HFn, where:

HF0 = ∅ and HFn+1 = Pow (HFn). A close relative of HF0, in which sets are not

required to be well-founded, goes under the name of HF1/2 (see [1, 14]). HF0 or HF1/2

can be seen as the collection of finite (either acyclic or cyclic) graphs where sets are

represented by nodes and arcs depict the membership relation among sets (see [14]).

A further enrichment of both HF
0 and HF

1/2 is obtained by adding atoms, that is

copies of the empty-set, to be denoted by a1, a2, . . . and collectively represented by

A = {a1, a2, . . .}. The resulting universes will be denoted by HF
0(A) and HF

1/2(A).
In the next section, we will regard the domain∆ of a DL interpretation as a fragment

of the universe of an Ω-model, i.e. ∆ will be regarded as a set of sets of the theory Ω

rather than as a set of individuals, as customary in description logics.

3 The description logic ALC
Ω

Let NI , NC , and NR be the set of individual names, concept names, and role names in

the language, respectively. In building complex concepts, in addition to the constructs

of ALC [2], we also consider the difference \ and the power-set Pow constructs. The

set of ALCΩ concepts are defined inductively as follows:

– A ∈ NC , ⊤ and ⊥ are ALCΩ concepts;
– if C,D are ALCΩ concepts and R ∈ NR, then the following are ALCΩ concepts:

C ⊓D,C ⊔D,¬C,C\D,Pow(C), ∀R.C, ∃R.C

While the concept C\D can be easily defined as C⊓¬D in ALC, this is not the case for

the concept Pow(C). Informally, the instances of concept Pow(C) are all the subsets of

the instances of concept C.

Besides ABox assertions of the form C(a) with a ∈ NI , we allow in the ABox

concept membership axioms and role membership axioms, respectively, of the form:

C ∈ D and (C,D) ∈ R, where C and D are ALCΩ concepts and R is a role name.

The additional expressivity of the language, allows for instance to represent the fact

that polar bears are in the red list of endangered species, by axiom Polar ⊓ Bear ∈
RedListSpecies , and that the polar bears are more endangered than eagles by adding a

role moreEndangered and axiom (Polar ⊓ Bear ,Eagle) ∈ moreEndangered .

The semantics for ALCΩ is defined interpreting concepts as elements (sets) in the

universe U of an Ω-model, In particular, a distinguished transitive set ∆ (i.e. a set x

satisfying (∀y ∈ x)(∀z ∈ y)(z ∈ x)) in U is considered.

Definition 1. An interpretation for ALCΩ is a pair I = 〈∆, ·I〉 over a set of atoms A

where:

– the non-empty domain ∆ is a transitive set chosen in a model M of Ω over the

atoms in A (we let U be the universe of the model M);2

2 In the following, for readability, we will denote by ∈, Pow , ∪, \ (rather than Pow
M, ∪M,

\M) the interpretation in a model M of the predicate and function symbols ∈, Pow , ∪, \,

respectively.



– the extension function ·I maps each concept name A ∈ NC to an element AI ∈ ∆;

each role name R ∈ NR to a binary relation RI ⊆ ∆ × ∆; and each individual

name a ∈ NI to an element aI ∈ A ⊆ ∆. The function ·I is extended to complex

concepts of ALCΩ as follows:

⊤I = ∆ ⊥I = ∅ (¬C)I = ∆\CI

(C\D)I = (CI\DI) (Pow(C))I = Pow (CI) ∩∆
(C ⊓D)I = CI ∩DI (C ⊔D)I = CI ∪DI

(∀R.C)I = {x ∈ ∆ | ∀y((x, y) ∈ RI → y ∈ CI)}
(∃R.C)I = {x ∈ ∆ | ∃y((x, y) ∈ RI ∧ y ∈ CI)}

Observe that A ⊆ ∆ ∈ U . The interpretation CI of a concept C can be regarded both

as an element in U (the intention of the set) and as a subset of U (the extension of the

set). The semantics of standard DL concept constructs is defined as usual but, as ∆ is

not guaranteed to be closed under union, intersection, etc., the interpretation CI of a

concept C is in U but not necessarily in ∆. However, given the interpretation of the

power-set concept as the portion of the (set-theoretic) power-set visible in ∆, it is easy

to see by induction that, for each C, CI is a subset of ∆.

Given an interpretation I , the usual notion of satisfiability in ALC is extended to

membership axioms as follows: (i) I satisfies C ∈ D if CI ∈ DI ; (ii) I satisfies

(C,D) ∈ R if (CI , DI) ∈ RI . Given a knowledge base K = (T ,A), an interpretation

I satisfies T (resp. A) if I satisfies all inclusions in T (resp. all axioms in A); I is a

model of K if I satisfies T and A.

Let a query F be either an inclusion C ⊑ D (where C and D are concepts), an

assertion, or a membership axiom. F is entailed by K , written K |= F , if for all models

I =〈∆, ·I〉 of K , I satisfies F . The problem of instance checking in ALCΩ includes

the problem of verifying whether a membership C ∈ D is a logical consequence of the

KB (i.e., whether C is an instance of D).

4 Translation of ALC
Ω into ALCOI

A translation of the logic ALCΩ into the description logic ALCOI , including inverse

roles and nominals, can be defined based on the correspondence between ∈ and the

accessibility relation of a modality explored in [3]. There, the membership relation ∈
is used to represent a normal modality R. Here, vice-versa, a new (reserved) role e in

NR is introduced to represent the inverse of the membership relation, restricted to the

sets in ∆: in any interpretation I , (x, y) ∈ eI will stand for y ∈ x. The idea underlying

the translation is that each element u of the domain ∆ in an ALCOI interpretation

I = 〈∆, ·I〉 can be regarded as the set of all the elements v such that (u, v) ∈ eI .

The translation of a KB K = (T ,A) of ALCΩ into ALCOI can be defined by

replacing each concept C in K with a concept CT of ALCOI , where all occurrences

of the power-set concept Pow(D) are recursively replaced by ∀e.DT . A new individual

name eC is also introduced for each concept name C occurring on the left hand side

of a membership axiom. By axiom CT ≡ ∃e−.{eC}, the role e relates eC with all the

instances of concept C. Each membership axiom C ∈ D can then be translated to an

assertion DT (eC). Soundness and completeness of the translation in ALCOI (see [5,

6]) provide, besides decidability, an EXPTIME upper bound for satisfiability in ALCΩ .



5 Conclusions

We expect that the approach of extending ALC with Ω can also be adopted for more

expressive DLs, which do not enjoy the finite model property. The proof of complete-

ness of the translation in [5] does not apply to this case, which will be subject of future

investigation. Other directions for future investigation concern: the treatment of roles as

individuals; restricting the semantics to well-founded sets to avoid circular definitions

of sets; translating ALCΩ into the set theory Ω, which may open to the possibility of

exploiting proof methods developed for set theories for reasoning in extended DLs.
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9. M. Homola, J. Kluka, V. Svátek, and M. Vacura. Typed higher-order variant of SROIQ - why

not? In Proc. 27th Int. Workshop on Description Logics, Vienna, Austria, July 17-20, pages

567–578, 2014.

10. I. Horrocks and P.F. Patel-Schneider. A Proposal for an OWL Rule Language. In Proc.WWW

2004. ACM, 2004.
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