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Abstract. In this paper, we present an extension, and an evaluation, to
existing Quantum like approaches of word embedding for IR tasks that
(1) improves complex features detection of word use (e.g., syntax and
semantics), (2) enhances how this method extends these aforementioned
uses across linguistic contexts (i.e., to model lexical ambiguity) - specifi-
cally Question Classification -, and (3) reduces computational resources
needed for training and operating Quantum based neural networks, when
confronted with existing models. This approach could also be latter ap-
plicable to significantly enhance the state-of the-art across Natural Lan-
guage Processing (NLP) word-level tasks such as entity recognition, part-
of-speech tagging, or sentence-level ones such as textual relatedness and
entailment, to name a few.
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1 Introduction

Word embedding [4, 5] is a general technique for treating words as a vector of
real valued numbers. It is a well-known distributed form of word representa-
tion [6], encoding semantic as well as linguistic information and instruction of
words, which generated state-of-the-art results in several Information Retrieval
(IR) and NLP tasks in recent times. Although existing research [22, 23] presents
architectures proven to be successfully used in several posterior tasks, only few
studies exist that analyze the word-embedding mechanism itself, and how en-
hancing it, or even simplifying it, could lead to better results to existing methods.
Particularly, this paper presents an analysis on how simple word embedding op-
timization can lead to expressive better results on Question Classification task.
Specifically, how sensibly reducing word embedding representations from larger
pre-trained [13,8,14] corpus can prove beneficial to Quantum based models,
where complexity and inputs size are factors of great concern.

Being extensively used to better capture cognitive behavior in different do-
mains [1,2], Quantum mechanics principles can also be applied to IR when it
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comes to language related tasks. One example can be outlined on determin-
ing textual entailment, or combination [3], of terms. For instance, modern ap-
proaches can assign high probabilities to the words ‘strong‘ and ‘coffee’ in a
term ‘strong coffee if they repeatedly co-occur in a training corpus. However
it can lapse to capture the fact that they might occur in an opposite sense -
‘Coffee is not very strong‘. By applying Quantum cognitive aspects to word
embedding [10], it is stated that users do not superimpose a single polarity or
sentiment to each word, where a term subscribes to the global polarity of aggre-
gated words based on the other entities it is coupled with. This resembles the
action of tiny particles which remain in all possible states at the same time and
hinder each other giving rise to new states based on the relative aspects: words
that occur in similar contexts tend to have similar meanings.

By highlighting the importance of the two aforementioned trending concepts,
namely word embedding and Quantum cognitive models, in this paper we focus
on providing a lightweight method for encouraging researchers to continually
embrace new opportunities in IR field when solving textual related tasks. We
structure our work in this paper as follows: first we gently introduce a back-
ground section on how words in a corpus are trained in form of embeddings
(vectors) to compose a vector space. We then bring to light a background on
Quantum inspired models for IR and their applications for textual tasks, fol-
lowed by how trending pre-trained models can represent a potential problem on
computing resources when dealing with complex architectures like in deep neural
networks [9], and our proposition on how to solve it. On the subsequent section,
we present accuracy evaluations on Question Classification task confronting ex-
isting literature as a baseline, and then conclude outlining the open research
opportunities for this paper.

2 Background

With the advent of Word2Vec, an iterative group of algorithms that record
co-occurrence of words at a time rather than capturing all co-occurrence counts
explicitly like in singular value decomposition, word embedding technique places
words into space in which it approximates (1) spatial distance for computation
(2) constant relationships as vectors in space. Recent studies on word representa-
tions based on those vectors proposed more efficient and accurate morphological
language structures [15,8] as a natural evolution of this open research field.
Global vectors of word representation (GloVe) [8] is an unsupervised learning
algorithm for retrieving vector representations for words, trained on assembled
global word-to-word co-occurrence stats from a corpus, and the resulting repre-
sentations shows impressive performance in several NLP and IR tasks [26-29]
with linear sub-structures of the word vector space.

However, shifting from word-level to recently proposed character-level mod-
els, like FastText in [13], made it efficient to tackle languages peculiarities or
even the problem of ‘unknown words‘, i.e. rare words that were not available in
the corpus of the training process of the embedding models. FastText [13] is an
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enhanced version of traditional Word2Vec [15,16], which enriches vocabulary
analysis with the usage of character n-grams, i.e., a word is the result of the sum
of the many character n-grams that composes it.

3 Related Work

3.1 Quantum like assertion

Several embedding models based on the formalism of Quantum mechanics have
been investigated to show dependencies between words and text portions [18-
20], which have been modeled as Quantum mixed states and then described by
a so called density matrix with its off-diagonal elements depicting word rela-
tionship in a Quantum aspect. As opposed to traditional embeddings allocated
in one-dimensional vector space, those complex representations are placed in
one infinite-dimensional space, called the Hilbert space. Recent advancement
of Quantum-inspired models for Information Retrieval tasks studies the non-
classical behavior of word dependency relations. Most of these models facilitate
the space arena to operate in a real-valued Hilbert space R™, describing word or a
text portion being a real-valued vector or matrix, generally because the paucity
of appropriate textual patterns contributes to the imaginary part. Earlier stud-
ies [24,25] confirm that Quantum events cannot be simply explicated without
complex numbers, as most models are theoretically narrowed. More related to
IR, QWeb [21] is a Quantum theoretical framework for modeling document col-
lections in which the notion of a term is replaced by ”whole meaning” that can
be a concept or concept mixture described as a state in a Hilbert Space and a
superposition of the concept states respectively. In this framework, the complex
phases of all concepts have a natural association to the scope of interference
among concepts. However, this framework has not yet turned up with its appli-
cability to any IR or NLP tasks as per the authors’ knowledge. The Quantum
Information Access framework discussed in [17] uses term vectors and their com-
binations (by means of mixtures and superpositions) to represent information
needs in a real-valued Hilbert space. This highly expressive representation of doc-
uments and queries is shown to perform similar to established ranking functions
like BM25.

In search of a potential Quantum-inspired model, [10] interprets words with
complex weights in a linear sequence of latent concepts, and multiple words as
a complex sequence of word states, being terms represented either in a mixed
or superposition state, which consents with [21] except by the fact that their
assumption of terms are described as ”entities of meaning” in QWeb. Our ex-
periment is based on sentence-level interpretation and considers a sentence as a
blend of words, where a word is described as a Quantum state consisting of two
parts, (1) amplitudes of co-occurred words to capture the low-level information
and (2) complex phases to depict the emergent meaning or polarity when a word
aggregates with other words. In this manner, the meaning from word combina-
tion will obviously prevail in the interference among words and will consequently
be recorded tacitly in the density matrix representation. This paper conducts a
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more exhaustive evaluation of the Quantum model described in [10] that con-
tributes to the domain of both word embedding and Quantum-inspired IR, which
can be illustrated as an enhanced evaluation of classical and non-classical embed-
ding approaches, observed as a research study for Quantum-inspired language
models and this benchmarking on Complex word embedding can be applicable
for QWeb [21] onto developing an application context.

3.2 Embeddings and their Dimensionality Reduction

On the Classical Mixture approach of sentences proposed by [10], the need of
representing each word vector w into w? w (equivalently, in Dirac’s notation |w)
and |w) (w|, respectivelly) increases the resources needed for training a model,
specially deep models like a neural networks. Publicly available pre-trained word
embedding models [14, 13] were used as the foundation for the experiments input.
However, such pre-trained models contain embeddings with 300-units dimensions
per term, resulting in complex embedding matrices of 300 columns and rows.

The high dimensionality of Quantum structured objects tends to result in
lower batch sizes and increased memory and processor usage, consequently tak-
ing longer for a network to be trained, even on well-equipped hardware, as no
longer the inputs |w) of dimension (1, ||w)|), but (| |w)|,]||w)|). Motivated by
this challenge to cope with high dimensionality, we include further experiments
on embeddings dimensionality reduction, reproducing [11,12], which, in a com-
bined manner, benchmarks different algorithms but none related to Quantum
techniques applied to IR. In [12], by subtracting the ‘mean energy’ of the vectors
contained in the model, hence increasing discrimination between vector indexes,
we apply Principal Component Analysis (PCA) technique, to identify the top
components responsible for the major variance ratio between each of the units
of the word vectors of the whole model vocabulary. Then, by eliminating those
top components, and performing further compression (PCA transformation do
half the size of the dimensions) on the pre-trained models, it is possible to still
outperform original ones at the same time as optimizing training process and
time for Quantum complex architectures, as shown in section 4.2.

Although simply extending [12] with the method proposed by [11] would be
straightforward, we also address an extension to the latter, with our proposed
dynamic way of determining the number of components to be removed from the
model based on a threshold. One open line of research in [11] was replacing a
fixed threshold of 7 components to be nullified by PCA analysis. Our empirical
analysis has shown that removing the components responsible for 20% of the
variance, which represents in practice either 6 or 7 components depending on
which word embedding model is being analyzed, can still present useful results
with the model transformation techniques, independently of which algorithm the
embedding model has been trained upon. Below, the two steps of the complete
operation are described, including the proposed dynamically generated factor ~
in Algorithm 1 , which serves as a counter to identify the number of compo-
nents to be removed, and the main transformation procedure in Algorithm 2, as
originally proposed in [11].
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Algorithm 1 Dynamic Model Discrimination

procedure DISCRIMINATE-MODEL(V, threshold = 0.2) > the proposed threshold
1 = MEAN(V)
forzz =1, ..., |Vl do
Vin] = V] -
end for
pi..a = PCA(V)
vy=0
partial_ratio = 0.0
for p in p; do

vy+=1
if partial_ratio 4+ p.variance_ratio > threshold then
break
end if
partial_ratio += p.variance_ratio
end for
for n = 1, ... |Vl do
Vin) = Vil - 27, (o7 VIn))ps
end for
return V

end procedure

where V' = the model being transformed, represented by key/value combination of
term and its vector representation, threshold = threshold for the major variance ratio
interval

Algorithm 2 Model Reduction

procedure REDUCE-MODEL(V)
n=(|V)/2
V = DISCRIMINATE-MODEL(V)
V = PCA-TRANSFORM(V, n)
V = DISCRIMINATE-MODEL(V)
return V

end procedure

where V' = the model being transformed, represented by key/value combination of
term and its vector representation

4 Evaluation

The goal of our evaluation is to look at performance of the different embedding
models and datasets on a Question Classification task. The relevance of this
task can be defined by the fact that, traditionally in IR, this represents one
problem which focuses on identifying characteristics needed to answer a potential
question, or even to determine the type of a question itself, like a ‘who’, ‘how’
or ‘when’ question to be answered by a system [30]. In the following we describe
the datasets and the results of our experiment.
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4.1 Dataset

For our experiments on Question Classification task to be conducted we made
use of datasets on two different stages. The first one was the choice of pre-trained
word embedding models, which we will also refer to as ‘datasets‘ in this section.
The second and last step, was determining which dataset, properly saying, would
be considered to test our findings. Table 1 lists the models we elected as input for
the Complex Word Embeddings generation. For this matter, we elected GloVe [8]
and Facebook Research Lab’s recently proposed FastText [13].

The motivation behind the selection of these two distinct aforementioned
methods is that the first behaves in a similar way of traditional word2vec algo-
rithm, treating each word as one exclusive vector representation, whereas Fast-
Text is built on top of the idea that a word is represented by the sum of the
different character n-grams it is composed of, relazing the constraints of dealing
with rare and unknown words on training phase, and behaving like this in a pos-
sible multi-language scenario, since it is agnostic to rigid rules on morphological
compositions.

Vocabulary Corpus size
Identification Size in tokens

(A) - Wikipedia.Gigaworld.GloVe.6B.300d f | 400 thousand 6 Billion
(B) - crawl-300d-2M-vec I 2 Million 600 Billion

(C) - GloVe.Common Crawl.840B.300d 1 2.2 Million 840 Billion

Table 1. The pre-trained word embedding models selected for this experiment, where
t= GloVe algorithm embeddings, I= Fasttext algorithm embeddings. All the models
have vector dimensions set to 300 units.

Models (B) and (C) have been also transformed using the techniques de-
scribed in section 3.2, leading us to 5 word embedding models, properly saying -
being 2 versions of each (‘transformed’ with vector length of 150, and ‘original’
with vector length of 300).

Table 2, on the other hand, shows the structured datasets that were used
to carry out the experiments. Namely, TREC-10 Dataset for Question Classifi-
cation, and Stanford Sentiment Treebank, which were chosen as a way of fairly
comparing existing baseline expressed in [10].

4.2 Experiments and Results

To compare the performance of the different embedding models and the datasets
explored in Table 3, we here present one concise table contemplating our mod-
ified embedding models executed in classic fashion (words represented as real
valued numbers - datasets appended with ‘R’), vs the reproduced mixture model
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Identification Number of records | Number of classes
TREC 10 Question Classification 5,952 6
SST-2 70,042 2

Table 2. Datasets description

from [10] (datasets appended with ‘M’). We observe how the character n-grams
based FastText (B) model outperforms mostly all other models when it comes
to traditional word embedding input, and on the other hand, how GloVe based
models produce higher accuracy when applying the Complex Word Embeddings
technique. In particular, it is visible how the reduced versions of the pre-trained
embedding models outperform original ones with a considerable distance, or al-
most perform equally with minimal percentage difference. This comes with a
great advantage, since in practice it represents a model reduced in 50% of size
(less resources and time needed for training), and also lower complexity (150
units vs 300 of pre-trained versions). Nevertheless, it must also be highlighted
how the 50% reduction of model (C), which was trained in a huge corpus of 840
Billion Tokens, does not considerably degrade the overall performance if com-
pared to its original version. It becomes a term on the equation for an expert to
decide the trade-off between model size and complexity versus performance and
small degradation in accuracy.

Model SST-2-R | TREC-R | SST-2-M | TREC-M
(A) 7847% | 7980% | 8214% | 75.48%
(B) 79.29 % 79.30 % 81.73 % 84.84 %
(B) - reduced | 78.86 % 82.30 % 81.83 % 85.20 %
(C) 7910 % | 8050 % | 82.42 % | 84.20%
(C) - reduced | 78.42 % 80.00 % 82.21 % 85.48 %

Table 3. Experiments conducted. Here, the metrics for evaluation is the accuracy on
the classification. In bold, the best results for each method.

4.3 Training steps - time reduction

As one important aspect on the dimensionality reduction of the pre-trained word
embedding models, we also plot in Table 4 the difference on the scale of ‘time
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per epoch’, listing in seconds how much time each model took, per epoch, to
be trained on the different tasks:

Model SST-2-R | TREC-R | SST-2-M | TREC-M
(A) 31s 8s 974s 51s
(B) 31s 8s 974s 51s
(B) - reduced 20s 5s 332s 18s
(C) 31s 8s 972s 51s
(C) - reduced 20s 5s 332s 18s

Table 4. The times per epoch relation presents the difference on training time with
equivalent accuracy as original pre-trained models, however with 50% of the original
size of each.

We also place as publicly available the gists containing the logs of execution
of each of the four identified tasks, namely SST-2-R!, TREC-R?, SST-2-M3,
TREC-M*.

5 Conclusion and Future Work

The proposed reduction accomplishes better and more efficient execution than
the state-of the-art Quantum and classical models evaluated on the Question
Classification and Sentiment Analysis datasets, with the usage of large pre-
trained English corpus based on different word embedding techniques. As future
work, we also see an opportunity for an analysis on how to map the impact,
or weight, of each word in a sentence, leveraging performance of learning tasks
which could then lead to a bigger model overall accuracy. This open research
could lead to establishing an interesting real-valued factor v that could increase
or decrease the importance of a given term in a sentence, according to the rele-
vance the world represents to a context.
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