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Abstract. Generating and automatically checking proofs independently
increases confidence in the results of automated reasoning tools. The use
of computer algebra is an essential ingredient in recent substantial im-
provements to scale verification of arithmetic gate-level circuits, such as
multipliers, to large bit-widths. There is also a large body of work on
theoretical aspects of propositional algebraic proof systems in the proof
complexity community starting with the seminal paper introducing the
polynomial calculus. We show that the polynomial calculus provides a
frame-work to define a practical algebraic calculus (PAC) proof format
to capture low-level algebraic proofs needed in scalable gate-level ver-
ification of arithmetic circuits. We apply these techniques to generate
proofs obtained as by-product of verifying gate-level multipliers using
state-of-the-art techniques. Our experiments show that these proofs can
be checked efficiently with independent tools.

1 Introduction

Formal verification gives correctness guarantees. However, the process of verifi-
cation might also not be error-free. A common approach to increase confidence in
the results of verification consists of generating machine checkable proofs which
are then checked by independent proof checkers. These checkers are less complex
than for example theorem provers producing proofs and can also be verified.

For instance many applications of formal verification rely on SAT solvers.
Their results can be validated by producing and checking resolution proofs [17,37]
or clausal proofs [15,17]. Generating proofs is mandatory in the main track of the
SAT Competition since 2016. These approaches have also recently been shown
to scale to huge low-level proofs of combinatorial problems such as the Boolean
Pythagorean triples problem [18] or Schur Number Five [16].

However, in certain applications, e.g., arithmetic circuit verification, reso-
lution based SAT solving does not work. Especially reasoning about gate-level
multipliers is considered to be hard [5]. For arithmetic circuit verification the
currently most promising approach uses algebraic reasoning [11,26,30,32].

In this approach each circuit gate is translated into a polynomial to model
constraints between its output and inputs, i.e., roots of polynomials are identi-
fied as solutions of gate constraints. Additional polynomials ensure that values
remain in the Boolean domain. Word-level specifications relating circuit out-
puts and inputs can also be translated into polynomials. Thus verification boils
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down to show that the specification polynomial is “implied” by the polynomials
induced by the circuit gates (contained in the ideal generated by them).

To validate results of algebraic reasoning the polynomial calculus can be
used [12]. It operates on polynomials and allows to check if a polynomial is a
logical consequence of a given set of polynomials. The main focus in this area
has been on proof complexity to obtain lower-bounds for the degree and size of
proofs [20]. For instance [27] introduces a general method to obtain lower bounds
and [25] shows that certifying the non-k-colorability of graphs requires proofs
of large degree. A more general calculus capable of detecting unsatisfiability of
nonlinear equalities as well as inequalities is discussed in [34].

Our paper shows that the polynomial calculus can also be used in practice.
In particular we generate low-level algebraic proofs needed to validate the results
of ideal membership testing used in arithmetic circuit verification by translat-
ing proofs extracted from computer algebra systems to polynomial refutations
in the polynomial calculus. After we review preliminaries in Sect. 2, we present
a concrete proof format for polynomial calculus proofs, called practical alge-
braic calculus in Sect. 3. In Sect. 4 we give a comprehensive introduction to
arithmetic circuit verification, following [30]. Section 5 introduces the tool flow
of verifying and proof checking arithmetic circuits. In our experiments, shown
in Sect. 6, our new proof checker PacTrim is used to independently validate
the results of multiplier verification [30]. We further apply these techniques to
equivalence checking of multipliers [31] and proving certain ring properties, e.g.
commutativity of multipliers [3]. In general, we claim that our approach is the
first to provide machine checkable proofs for current state-of-the-art techniques
in verifying arithmetic circuits [11,26,30,32].

2 Preliminaries

Proof systems are used to validate the results of verification systems. While a
verification system only gives a yes/no answer, a proof system provides addition-
ally a certificate with which the answer can be checked independently. We are
concerned here with a proof system for reasoning about polynomial equations.
The question is whether the zeroness of a certain set of polynomials implies the
zeroness of another polynomial. We consider polynomials p ∈ F[X] where F is a
field and X = {x1, . . . , xn} is a finite set of variables. The function X 7→ p(X)
is called polynomial function of p. The polynomial equation of p is defined as
p(X) = 0 and the solutions of this equation are the roots of p. From now on we
drop the function argument and write p = 0 instead of p(X) = 0.

Reasoning with polynomial equations is well-understood both in computer
algebra and in computational logic. Already Hilbert and collaborators have stud-
ied the theory of polynomial ideals in order to reason about the solution sets of
polynomial equations. The application of Gröbner bases [8] by for instance Ka-
pur [21,22,23] has turned the algebraic approach into a valuable computational
tool for automated theorem proving with renewed recent interest [1,38].
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In order to introduce the notation and terminology needed later, let us give
a brief summary of the theory. As far as algebra is concerned, we follow the
standard textbooks [4,9,13]. From the logical perspective, we use a variant of
the polynomial calculus (PC) as proposed by [12]. It is more flexible than the
Nullstellensatz (NS) proof system [2], which is also heavily used in the proof
complexity community. The relation between PC and NS in the context of our
application is further discussed at the end of this section.

Let G ⊆ F[X] and f ∈ F[X]. In logical terms, the question is whether the
equation f = 0 can be deduced from the equations g = 0 with g ∈ G, i.e., every
common root of the polynomials g ∈ G is also a root of f . As we will only
consider polynomial equations with right hand side zero, we take the freedom
to write f instead of f = 0. We write proofs as tuples P = (p1, . . . , pn) of
polynomials where each pi is derived by one of the following rules.

Addition
pi pj
pi + pj

pi, pj appearing earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appearing earlier in the proof
or is contained in G
and q ∈ F[X] being arbitrary

If f can be deduced from the polynomials g ∈ G, i.e. pn = f , we write G ` f . In
algebraic terms, G ` f means that f belongs to the ideal generated by G. Recall
that an ideal I ⊆ F[X] is defined as a set with 0 ∈ I and the closure properties
u, v ∈ I ⇒ u+v ∈ I and w ∈ F[X], u ∈ I ⇒ wu ∈ I. If G = {g1, . . . , gm} ⊆ F[X]
is a finite set of polynomials, then the ideal generated by G is defined as the
set {q1g1 + · · · + qmgm : q1, . . . , qm ∈ F[X]} and denoted by 〈G〉. The set G is
called a basis of the ideal 〈G〉. It is clear that this is an ideal and that it consists
of all the polynomials whose zeroness can be deduced from the zeroness of the
polynomials in G. In logical terms we would call G an axiom system and 〈G〉
the corresponding theory. If we can derive G ` 1, or in algebraic terms 1 ∈ 〈G〉,
the PC proof is called a PC refutation.

Example 1. This example shows that the output c of an XOR gate over an input
a and its negation b = ¬a is always true, i.e., c = 1 or equivalently −c+ 1 (= 0).
We apply the polynomial calculus over the ring Q[c, b, a]. Over Q a NOT gate
x = ¬y is modeled by the polynomial −x + 1 − y and an XOR gate z = x ⊕ y
is modeled by the polynomial −z + x + y − 2xy. Because the variables are of
the boolean domain we further need to enforce that every variable can only
take the values 0 or 1. Therefore we add for each variable xi a polynomial of
the form xi(xi − 1) to the given set of polynomials. The corresponding circuit
representation, the given polynomials and a polynomial proof are shown in Fig. 1.

Example 2. Let G = {x, x + y} ⊆ Q[x, y], f = y. We have G ` f . A proof
is P = (−x, y). The first entry follows by the multiplication rule from x with
q = −1, and the second entry follows by the addition rule from the first entry
and x+ y which is contained in G.
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G = { − b + 1− a,

− c + a + b− 2ab,

a2 − a, b2 − b, c2 − c}

a c

b

−c + a + b− 2ab −b + 1− a

−c + 1− 2ab

−b + 1− a

2ab− 2a + 2a2

−c + 1− 2a + 2a2

a2 − a

−2a2 + 2a
−c + 1

Fig. 1: The circuit, polynomial representation of the gates and proof for Ex. 1.

Thanks to the theory of Gröbner bases [4,8,13], the polynomial calculus is
decidable, i.e., there is an algorithm, which for any finite G ⊆ F[X] and f ∈ F[X]
can decide whether G ` f or not. A basis of an ideal I is called a Gröbner basis
if it enjoys certain structural properties whose precise definition is not relevant
for our purpose. What matters are the following fundamental facts:

– There is an algorithm (Buchberger’s algorithm) which for any given finite
set B ⊆ F[X] computes a Gröbner basis for the ideal 〈B〉 generated by B.

– Given a Gröbner basis G, there is a computable function redG : F[X]→ F[X]
such that ∀ p ∈ F[X] : redG(p) = 0 ⇐⇒ p ∈ 〈G〉.

– Moreover, if G = {g1, . . . , gm} is a Gröbner basis of an ideal I and p, r ∈ F[X]
are such that redG(p) = r, then there exist h1, . . . , hm ∈ F[X] such that
p− r = h1g1 + · · ·+ hmgm, and such polynomials hi can be computed.

Consider the extended calculus with the additional rule

Radical
pmi
pi

m ∈ N \ {0} and
pmi appearing earlier in the proof or is contained in G.

If the polynomial f can be deduced from the polynomials g, where g ∈ G, with
the rules of PC and this additional radical rule, we write G `+ f and call this
proof radical proof (`+). In algebra, the set { f ∈ F[X] : G `+ f } is called the
radical ideal of G and is typically denoted by

√
〈G〉.

Also the extended calculus `+ is decidable. It can be reduced to ` using the
so-called Rabinowitsch trick [13, 4§2 Prop. 8], which says

f ∈
√
〈G〉 ⇐⇒ 1 ∈ 〈G ∪ {yf − 1}〉 or G `+ f ⇐⇒ G ∪ {yf − 1} ` 1,

depending whether you prefer algebraic or logic notation. In both cases, y is a
new variable and the ideal/theory on the right hand sides is understood as an
ideal/theory of the extended ring F[X, y]. The Rabinowitsch trick is therefore
used to replace a radical proof (`+) by a PC refutation.

For a given set G ⊆ F[X], a model is a point u = (u1, . . . , un) ∈ Fn such
that for all g ∈ G we conclude that g(u1, . . . , un) = 0. Here, by g(u1, . . . , un)
we mean the element of F obtained by evaluating the polynomial g for x1 =
u1, . . . , xn = un. For a set G ⊆ F[X] and a polynomial f ∈ F[X], we write
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G |= f if every model for G is also a model for {f}. Given G ⊆ F[X], define
V (G) as the set of all models of G. For an algebraically closed field F, Hilbert’s
Nullstellensatz [13, 4§1 Thms. 1 and 2] asserts that V (G) is nonempty if and only
if 1 6∈ 〈G〉, and furthermore, f ∈

√
〈G〉 ⇐⇒ V (G) ⊆ V ({f}). In other words,

G |= f ⇐⇒ G `+ f . Particularly, the PC including the radical rule is correct
(“⇐”) and complete (“⇒”). In combination with Rabinowitsch’s trick, we can
therefore decide the existence of models and furthermore produce certificates for
the non-existence of models.

For our applications, only models u ∈ {0, 1}n ⊆ Fn matter. Let us write
G |=bool f if every model u ∈ {0, 1}n of G is also a model of {f}. Using basic
properties of ideals as described in [13, 4§3 Thm. 4], it is easy to show that
G |=bool f ⇐⇒ G∪B |= f , where B = {xi(xi−1) : i = 1, . . . , n}. Furthermore,
the equivalence G ∪ B |= f ⇐⇒ G ∪ B `+ f holds also when F is not
algebraically closed, because changing from F to its algebraic closure F̄ will not
have any effect on the models in {0, 1}n. Finally, let us remark that the finiteness
of {0, 1}n also implies that G ∪ B `+ f ⇐⇒ G ∪ B ` f . This follows from
Seidenberg’s lemma [4, Lemma 8.13] and generalizes Theorem 1 of [12].

In contrast to a PC refutation G∪ {1− yf} ∪B ` 1, where each polynomial
in the proof is generated using the rules of PC, a refutation in the NS proof
system is a set of polynomials Q = {q1, . . . , qm} ⊆ F[X] such that

m∑
i=0

qipi = 1 for pi ∈ G ∪ {1− yf} ∪B.

Although both systems are able to verify correctness of a refutation, we will use
PC and not the NS proof system, because for arithmetic circuit verification we
will rewrite some polynomials of G ∪ {1− yf} ∪B, and thus gain an optimized
algebraic representation of the circuit, cf. Sect. 4. In a correct NS refutation we
would also need to express these rewritten polynomials as a linear combination
of elements of G ∪ {1 − yf} ∪ B and thus lose the optimized representation,
which will most likely lead to an exponential blow-up of monomials in the NS
proof [10]. In PC we can generate these optimized polynomials on-the-fly and
then use these polynomials to show the correctness of the refutation.

3 Practical Algebraic Calculus

For practical proof checking we translate the abstract polynomial calculus (PC)
into a concrete proof format, i.e., we only define a format based on PC, which is
logically equivalent but more precise. In principle a proof in PC can be seen as
a finite sequence of polynomials derived from given polynomials and previously
inferred polynomials by applying either an addition or multiplication rule.

To ensure correctness of each rule it is of course necessary to know which rule
was used, to check that it was applied correctly, and in particular which given
or previously derived polynomials are involved. During proof generation these
polynomials are usually known and thus we require that all of this information
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘A ’ | ‘B ’ | . . . | ‘Z ’

number ::= ‘0 ’ | ‘1 ’ | . . . | ‘9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

power ::= variable [ ‘^ ’ constant ]

term ::= power (‘* ’ power)∗

monomial ::= constant | [ constant ‘* ’ ] term

operator ::= ‘+ ’ | ‘- ’

polynomial ::= [ ‘- ’ ] monomial (operator monomial)∗

given ::= (polynomial ‘; ’)∗

rule ::= (‘+ ’ | ‘* ’) ‘: ’ polynomial ‘, ’ polynomial ‘, ’ polynomial ‘; ’

proof ::= (rule ‘; ’)∗

Fig. 2: Syntax of given polynomials and proofs in PAC-format

is part of a rule in our concrete practical algebraic calculus (PAC) proof format
to simplify proof checking. The syntax of PAC is shown in Fig. 2. White space is
allowed everywhere except between letters and digits in a constant or a variable.
A proof rule contains four components

o : v, w, p;

The first component o denotes the operator which is either ‘+ ’ for addition or ‘* ’
for multiplication. The next two components v, w specify the two (antecedent)
polynomials used to derive p (conclusion). In the multiplication rule w plays the
role of the polynomial q of the multiplication rule of PC, cf. Sect. 2. A refutation
in PAC is a proof, which contains a non-zero constant polynomial (typically just
the constant “1”) as conclusion p of a rule.

As discussed above we do not need the radical rule for our purpose, even
though it could be easily added. Further note that the format is independent of
the domain of the models u, e.g., u ∈ {0, 1}n for gate-level circuit verification,
to which the values of variables are restricted. If such a restriction is necessary,
all elements of the corresponding set B (often also called field polynomials) have
to be added to the given set of polynomials.

Although the definition of number together with the definition of polynomial
only allows integer coefficients this is not a severe restriction. Rational number
coefficients can be simulated by multiplying involved polynomials with appro-
priate non-zero constants to eliminate denominators.

Example 3. Consider again Ex. 1. To test membership of 1− c ∈
√
〈G〉 we add

1 + y(c− 1) to the set of given polynomials G in order to apply Rabinowitsch’s
trick and obtain a PAC refutation:

+ : -c+a+b-2a*b, -b+1-a, -c+1-2a*b;

* : -b+1-a, -2a, 2a*b-2a+2a^2;

+ : -c+1-2a*b, 2a*b-2a+2a^2, -c+1-2a+2a^2;

* : a^2-a, -2, -2a^2+2a;

+ : -c+1-2a+2a^2, -2a^2+2a, -c+1;

* : -c+1, y, -c*y+y;

+ : -c*y+y, 1+c*y-y, 1;
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input G sequence of given polynomials

r1 · · · rk sequence of PAC proof rules

output “incorrect”, “correct-proof”, or “correct-refutation”

P0 ← G

for i ← 1 . . . k

let ri = (oi, vi, wi, pi)

case oi = +

if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi then Pi ← append(Pi−1, pi)

else return “incorrect”

case oi = ∗
if vi ∈ Pi−1 ∧ pi = vi ∗ wi then Pi ← append(Pi−1, pi)

else return “incorrect”

for i ← 1 . . . k

if pi is a non zero constant polynomial then return “correct-refutation”

return “correct-proof”

Fig. 3: Proof Checking Algorithm

For proof validation we need to make sure that two properties hold. The
connection property states that the components v, w are either given polynomials
or conclusions of previously applied proof rules. For multiplication we only have
to check this property for v, because w is an arbitrary polynomial. By the second
property, called inference property, we verify the correctness of each rule, namely
we simply calculate v+w resp. v ∗w and check that the obtained result matches
p. In a correct PAC refutation we further need to verify that at least one pi is a
non-zero constant. The complete checking algorithm is shown in Fig. 3.

4 Circuit verification using Computer Algebra

Following [11,30,31,32,33,36] we consider gate-level (integer) multipliers with 2n
input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈
{0, 1}. Each internal gate (output) is represented by a further variable l1, . . . , lm.
In this setting let X = a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lm, s0, . . . , s2n−1. Then
a multiplier is correct iff for all possible inputs the following specification holds:

2n−1∑
i=0

2isi =

(n−1∑
i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

Using algebraic reasoning this can be verified by showing that the specification
is contained in the ideal generated by the gate constraints. For each logical gate
in the circuit a so-called gate polynomial g ∈ Q[X] representing the relation be-
tween the gate inputs and output is defined. Example 1 defines these polynomials
for a NOT and an XOR gate. Indicating that the circuit operates over Boolean
variables we add for each variable xi ∈ X the relation xi(xi − 1) matching the
definition of B in the last paragraph of Sect. 2 to the gate polynomials G.
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Although all variables are restricted to boolean values we use Q as the base
field. Using Q connects the circuit specification (Eqn. (1)) to multiplication in Q.
The specification would be the same over Z, but Z is not a field, hence the
underlying Gröbner basis theory would be more complex. Theoretically reasoning
in the field Z2 is possible, but probably would be much more involved. A more
precise comparison will be done in the future.

A term order is a lexicographic term order if for all terms σ1 = xu1
1 · · ·xun

n ,
σ2 = xv1

1 · · ·xvnn we have σ1 < σ2 iff there exists i with uj = vj for all j < i,
and ui < vi. If the terms in the gate polynomials are ordered according to
such a lexicographic variable ordering where the variable corresponding to the
output of a gate is always bigger than the variables corresponding to inputs
of the gate, then by Buchberger’s product criterion [13] the gate polynomials
define a Gröbner basis for the ideal generated by the gate polynomials. Thus
the correctness of the circuit can be shown by reducing the specification by the
gate polynomials using polynomial reduction (redG) and checking if the result
is zero. We generate and check proofs for this reduction, cf. Sect. 5.

Directly reducing the specification without rewriting the Gröbner basis leads
to an explosion of intermediate results [30]. In practice it is necessary to use
rewriting techniques to simplify the Gröbner basis. In recent work [32] a re-
duction scheme was proposed which effectively (partially) reduces the Gröbner
basis. These preprocessing steps [32] are also applied in [30], where we intro-
duced a column-wise checking algorithm which cuts the circuit into 2n slices Si

with 0 ≤ i < 2n such that each slice contains exactly one output bit si. In each
slice the relation that the sum of the outgoing carries Ci+1 and the output-bit si
is equal to the sum of the partial products Pi =

∑
k+l=i akbl and the incoming

carries of the slice Ci has to hold. Thus we define for each slice Si a correspond-
ing specification Ci = 2Ci+1 + si − Pi. Initially we set C2n = 0 and recursively
calculate Ci as the remainder of reducing 2Ci+1+si−Pi by the gate polynomials
of the corresponding slice. In a correct multiplier C0 = 0 has to hold. Hence each
slice is verified recursively, thus the problem of circuit verification is divided into
smaller more manageable sub-problems.

In [31] we further improved incremental checking by eliminating variables [7],
local to full- and half-adders. Since these preprocessing and incremental algo-
rithms are complex and error prone to implement but essential to achieve scalable
verification we also generate and check proofs for them.

5 Engineering

We take as input circuit an And-Inverter Graph (AIG) [24] in the common
AIGER format [6]. The AIG is then verified using the computer algebra system
Mathematica [35]. We also generate proofs in our PAC-format (c.f. Sect. 3) which
then are either passed on to the computer algebra system Singular [14] or to our
own algebraic proof checker PacTrim. The complete verification flow is depicted
in Fig. 4. Boxes with “.〈suffix〉” refer to the input AIG or generated files. The
variable n defines the length of the two input bitvectors of the multiplier.
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.aig

n

.wl

.wl

.out

Verification

.pac

.polys

.spec

.singular

Certification

Certification
AigMul.&

ProofIt

Mathematica Python Python Singular

connect inference

PacMultSpec\PacEqSpec

AigMul.

AigToPoly

Mathematica PacTrim

verify+

verify check I

check II

Fig. 4: Toolflow of verifying and proof checking circuits

The tool AigMulToPoly [30,31] is used for verification without generating
proofs (verify). It takes an AIG as input and produces a file which can be passed
on to either Mathematica or Singular, which then performs the actual ideal
membership test. Different option settings can be selected to enable or disable
the preprocessing and rewriting techniques discussed in Sect. 4.

For proof generation (verify+) we use a second tool ProofIt which takes
the output file from AigMulToPoly as well as the original AIG and returns
a file which can be passed on to Mathematica. In Mathematica the proof (.pac)
is calculated. In the tool AigToPoly the original AIG is translated into a set
of polynomials G without applying any preprocessing. Together with the set
B = {xi(xi − 1) | xi ∈ X} these polynomials define the given set of polynomials
G ∪ B of the PAC proof (.polys). This is a rather trivial task implemented in
less than 130 lines of C code (half of them are just about command line option
handling) using the AIGER [6] library for parsing.

In the same spirit PacMultSpec and PacEqSpec have been implemented
to produce the specifications we want to verify (.spec). In PacMultSpec we
simply generate the multiplier specification as given in Sect. 4, i.e. Eqn. (1)
flattened. In PacEqSpec we generate a similar specification for equivalence
checking of two multipliers [31]. To gain a PAC refutation both types of speci-
fications are produced in negated form using the Rabinowitsch trick and hence
become part of the given set of polynomials.

Each polynomial of AigMulToPoly which is derived during preprocessing
needs to be checked if it is a logical consequence of the given set of polynomials.
Hence for each preprocessed polynomial f the representation modulo the given
set of polynomials G ∪B = {g1, . . . , gk} is calculated in Mathematica using the
built-in function “PolynomialReduce”. This command does not only allow to
compute the reduction redG∪B(f) = r, but it also returns cofactors h1, . . . , hk
such that f = h1g1 + . . . + hkgk + r. If the preprocessing is done correctly the
derived polynomials f are contained in the ideal 〈G ∪ B〉, thus redG∪B(f) = 0
and the above representation simplifies to f = h1g1 + . . . + hkgk. Knowing the
cofactors hi and the corresponding elements of G∪B we generate proof rules in
PAC in the following way. First we generate a multiplication proof rule for each
product higi.

∗ : g1, h1, h1g1; · · · ∗ : gk, hk, hkgk;
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In the listed rules the result p is always depicted simply as the product higi,
but in the actual PAC proof p is written in expanded (flattened) form. These
products are now simply added together as follows:

+ : h1g1, h2g2, h1g1 + h2g2;
+ : h1g1 + h2g2, h3g3, h1g1 + h2g2 + h3g3;

...
+ : h1g1 + . . .+ hk−1gk−1, hkgk, f ;

In the experiments we also use a non-incremental verification approach where
we do not use the incremental optimizations presented in Sect. 4, hence we have
to reduce the complete word-level specification of a multiplier by the (prepro-
cessed) gate and field polynomials. Extracting a proof works in the same way as
just described for the preprocessed polynomials.

Generating proofs for incremental verification is also similar, but instead
of the word-level specification of the multiplier we have to use the incremen-
tal specifications Ci = 2Ci+1 + si − Pi of each slice, cf. Sect. 4. The poly-
nomials Ci describing the incoming carries of a slice can be derived by cal-
culating redG∪B(2Ci+1 + si − Pi) = Ci. Since verification can be assumed to
succeed we have C2n = 0 and C0 = 0. As described in the last bullet on fun-
damental facts in Sect. 2 we are able to obtain cofactors h1, . . . , hk such that
2Ci+1 + si−Pi−Ci = h1g1 + . . .+hkgk and consequently a translation into the
PAC-format to derive the left-hand side of the equation.

To derive the word-level specification of a multiplier from the incremental
specifications we first multiply for each slice Si its incremental specification
Ci = 2Ci+1 + si − Pi by the constant 2i.

∗ : 2C1 + s0 − P0, 1, 2C1 + s0 − P0;
∗ : 2C2 + s1 − P1 − C1, 2, 4C2 + 2s1 − 2P1 − 2C1;

...
∗ : s2n−1 − P2n−1 − C2n−1, 22n−1, 22n−1s2n−1 − 22n−1P2n−1 − 22n−1C2n−1;

Subsequent accumulation of the polynomials above using PAC addition rules
cancels the terms Ci and

∑2n−1
i=0 2isi−

∑2n−1
i=0 2iPi remains. It holds that the sum

of partial products can be reordered to
∑2n−1

i=0 2iPi = (
∑n−1

i=0 2iai)(
∑n−1

i=0 2ibi) [30]
and thus we are able to deduce the word-level specification of multipliers.

In both approaches the incremental as well as the non-incremental one we
multiply the word-level specification of the multiplier by the additional variable
y and add it to the given polynomial 1− y ∗ spec ∈ G ∪ B to derive 1 and thus
obtain a correct PAC refutation.

As Fig. 4 shows we have two different flows for checking PAC proofs inde-
pendently from Mathematica, which was used for verification. The first one uses
Python scripts to validate the connection property of each rule and whether the
proof actually defines a refutation. With Singular we check the inference prop-
erty of each proof line, which in essence uses Singular as a calculator for adding
and multiplying polynomials.
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Fig. 5: Architecture of “btor” (left) and “sparrc” (right), where pij = aibj [31]

We also provide a new dedicated proof checker called PacTrim implemented
from scratch in C. It has similar features as DRAT-trim, which is the standard
proof checker in the SAT community for clausal proofs (and is used in the SAT
Competition – see also [16,18]). Our new PacTrim checker contains a parser
for PAC proofs and checks the connection property using hash tables and the
inference property using a dedicated stand-alone implementation of polynomial
arithmetic over arbitrary precision integers represented as strings.

While the first approach is rather general and easy to adapt it is, as the
experiments confirm, less robust (due to for instance the limit on variables in
Singular) and more importantly far less efficient than our dedicated checker. The
latter also allows to produce proof cores (of both original polynomials and proof
lines), and is also much closer to being certifiable.

6 Experiments

In our experiments we generate and validate PAC proofs for the (integer) mul-
tiplier benchmarks used in [30,31]. The “btor”-benchmarks are generated by
Boolector [28] and the “sparrc”-multipliers are part of the bigger AOKI bench-
mark set [19], containing several multiplier architectures. In both multiplier ar-
chitectures the partial products are generated as products of two input bits
which are then accumulated by full- and half-adders, as shown in Fig. 5 for in-
put size n = 4. In “btor”-multipliers the full- and half-adders are accumulated
in a grid-like structure, thus they are considered as array multipliers, whereas in
“sparrc”-multipliers full- and half-adders are accumulated diagonally.

In all our experiments we use a standard Ubuntu 16.04 Desktop machine with
Intel i7-2600 3.40GHz CPU and 16 GB of main memory. The (wall-clock) time
limit is 90 000 seconds and the main memory usage is limited to 7GB. The time
in our experiments is measured in seconds (wall-clock time). We mark unfinished
experiments by TO (reached time limit), MO (reached memory limit) or by EE,
when an error state is reached. An error state is reached by Singular, because
it has a limit of 32767 on the number of ring variables. All experimental data,
benchmarks and source code is available at http://fmv.jku.at/pac.

In Table 1 we separately list the time taken for verification, the generation
as well as checking of PAC-proofs for “btor”and “sparrc” multipliers of different
input bitwidth n. The third column lists configurations of AigMulToPoly. The
default configuration uses incremental column-wise slicing of [30], c.f. Sect. 4,

http://fmv.jku.at/pac
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n mult option verify verify+ chk I con inf chk II length core size core deg

4 btor inc 0 1 0 0 0 0 646 68% 3551 72% 6
4 btor inc-add 0 1 0 0 0 0 594 62% 4001 63% 5
4 btor noninc 0 1 0 0 0 0 638 68% 3862 74% 6

8 btor inc 1 4 0 0 0 0 3350 65% 21169 70% 6
8 btor inc-add 0 3 0 0 0 0 2914 62% 21915 64% 5
8 btor noninc 1 5 0 0 0 0 3334 65% 28227 78% 6

16 btor inc 4 70 0 1 3 4 14998 64% 106853 72% 6
16 btor inc-add 1 37 0 1 3 4 12738 61% 104351 66% 5
16 btor noninc 4 78 0 1 9 10 14966 64% 231643 87% 6

32 btor inc 44 1631 1 26 57 83 63254 64% 533773 76% 6
32 btor inc-add 7 801 1 18 49 67 53122 61% 487911 69% 5
32 btor noninc 65 1811 5 29 522 551 63190 64% 2594059 95% 6

64 btor inc 622 49638 4 586 4539 5125 259606 63% 2839901 81% 6
64 btor inc-add 121 22378 4 414 4236 4650 216834 61% 2387831 74% 5
64 btor noninc MO MO - - - - - - - - -

4 sparrc inc 0 1 0 0 0 0 753 64% 4943 68% 6
4 sparrc inc-add 0 1 0 0 0 0 764 65% 8156 66% 8
4 sparrc noninc 0 1 0 0 0 0 745 65% 5252 71% 6

8 sparrc inc 1 8 0 0 0 0 3917 62% 30494 69% 6
8 sparrc inc-add 0 7 0 0 1 1 3964 63% 59330 63% 8
8 sparrc noninc 1 33 0 0 0 1 3901 63% 37477 75% 6

16 sparrc inc 8 134 0 2 6 7 17445 62% 152698 71% 6
16 sparrc inc-add 1 112 0 2 18 20 17804 63% 317874 62% 8
16 sparrc noninc 11 2696 0 2 15 17 17413 62% 276885 84% 6

32 sparrc inc 104 3582 1 43 132 175 73301 62% 735218 74% 6
32 sparrc inc-add 8 2611 2 55 402 457 75244 63% 1492082 63% 8
32 sparrc noninc 351 TO - - - - - - - - -

64 sparrc inc 1575 TO - - - - - - - - -
64 sparrc inc-add 133 80906 12 1307 EE EE 309164 62% 6727026 65% 8
64 sparrc noninc MO - - - - - - - - - -

Table 1: Wordlevel proof checking

both with (inc-add) and without (inc) our new optimization of eliminating local
variables in full- and half-adders [31]. In the third configuration (noninc) the
whole word-level specification is reduced without any slicing of the multiplier.

The time needed for verification, proof generation and proof checking is listed
in the following columns. The corresponding execution paths are marked in Fig. 4
by dashed rectangles. The column verify shows the time Mathematica needs to
verify the multiplier, column verify+ shows the time needed to generate the proof
including the time of verify and in column chk I we measure the time our own
proof checker PacTrim needs to validate the proof. The time Python needs to
verify the connection property is listed in column con and the time Singular
needs to verify the inference property is listed in column inf. The column chk II
is the total time needed to verify the proof with Python and Singular. We did not
include the time the tools AigToPoly, PacMultSpec and PacEqSpec need,
because in the worst-case it only takes a second for 64-bit multipliers.

Inspired by [27] we also compute and include the number of polynomials in a
proof (length), the total number of monomials of the derived polynomials (size),
counted with repetition, and the maximum total degree of any monomial (deg).
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n mult verify verify+ chk I con inf chk II length core size core deg

4 btor-btor 1 1 0 0 1 1 1170 59% 7952 61% 5
8 btor-btor 1 6 0 0 1 1 5794 59% 43902 63% 5

16 btor-btor 2 75 1 5 10 14 25410 59% 210666 65% 5
32 btor-btor 27 1632 3 87 189 277 106114 59% 995330 69% 5
64 btor-btor 502 45155 15 1625 EE EE 433410 59% 4942642 74% 5

4 btor-sparrc 1 2 0 1 1 2 1340 61% 12107 64% 8
8 btor-sparrc 1 9 1 1 2 3 6844 61% 81317 63% 8

16 btor-sparrc 3 148 1 7 42 48 30476 61% 424189 63% 8
32 btor-sparrc 28 3456 7 163 848 1011 128236 60% 1999501 64% 8

4 sparrc-sparrc 1 2 0 0 0 1 1510 62% 16270 65% 8
8 sparrc-sparrc 1 12 1 1 5 6 7894 62% 118820 63% 8

16 sparrc-sparrc 2 223 2 9 73 82 35542 61% 638248 62% 8
32 sparrc-sparrc 29 5363 11 308 1591 1899 150358 61% 3006256 63% 8

Table 2: Equivalence proof checking

Usually not all given polynomials in the data set G∪{1− yf}∪B are needed to
derive a correct refutation, especially only a small subset of B is used. Thus next
to the length and size columns we list the percentage of polynomials and mono-
mials which are actually necessary to derive a PAC refutation (core) w.r.t. the
number of original and derived polynomials.

In general it can be seen that “sparrc”-multipliers need more time and space
for verification, certification and proof checking than “btor”-multipliers. By far
most of the time is needed for generating the proofs. For more scalable proof
generation it is clear that computer algebra systems would need to be adapted
to support proof generation on-the-fly or even application specific algebraic rea-
soning engines have to be implemented. Checking the proof with PacTrim takes
a fraction of the time needed for verification, at most 12 seconds, even for 64
bit multipliers. Proof checking using an independent computer algebra system
takes much longer – for 64 bit multipliers more than 4000 seconds.

In further experiments shown in Table 2 we construct proofs for the commu-
tativity property of multipliers, i.e., we want to prove for a certain multiplier
architecture that A ∗B = B ∗A holds. Among other things it was shown in the
work of [3] that polynomial sized resolution proofs for the commutativity prop-
erty of array and diagonal multipliers exist. Motivated by this result we generate
proofs for these two multiplier architectures, where “btor”-multipliers play the
role of array multipliers and “sparrc”-multipliers are considered as diagonal mul-
tipliers. We generate the commutativity miters by checking the equivalence of
a multiplier and the same multiplier with input bit-vectors swapped (btor-btor,
sparrc-sparrc). Furthermore we derive proofs for checking the equivalence of the
two architectures “btor” vs. “sparrc” (btor-sparrc). The columns in Table 2 fol-
low the same structure as in Table 1. In all commutativity and equivalence check-
ing experiments we used the configuration “inc-add”, which uses our incremental
column-wise slicing of [30] with the optimization of eliminating local variables in
full- and half-adders. We did not include commutativity or equivalence checking
experiments containing “sparrc” multipliers with bit-width n = 64, because we
reached an error state (EE) in the experiments of Table 1.
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Fig. 6: Length and size of btor-btor commutativity check

In Fig. 6 data points depicting core size (left plot) and core length (right plot)
of the “btor-btor”-commutativity proofs are shown for various input bitwidths n.
The additional polynomial curves are fitted to the data points (using linear re-
gression with R). For the proof length we used a parameterized model of a
quadratic polynomial. The proof size required a cubic polynomial. In both cases
the match is perfect, with absolute values of residuals less than 9∗10−10. This em-
pirically suggested quadratic complexity of algebraic proofs compares favourably
to the O(n7log n) upper bound for resolution proofs given in Thm. 2 of [3].

Comparing the meta data of the “btor-btor” and “sparrc-sparrc”-benchmarks
the proof lengths of “sparrc-sparrc”-benchmarks are of the same magnitude as
the proof lengths of “btor-btor”-benchmarks. The proof sizes of “sparrc-sparrc”
are around three times as big as the proof sizes of “btor-btor” with nearly
same percentages for the cores. Hence both measurements of “sparrc-sparrc”-
benchmarks can also be depicted by quadratic and cubic curves.

7 Conclusion

This paper applies proof checking to algebraic reasoning, not only in theory, but
also in practice, in order to validate verification techniques based on computer
algebra. We show how the abstract polynomial calculus [12] can be instantiated
to yield a practical proof format (PAC). Proofs in this format can be obtained as
by-product of verifying multiplier circuits using state-of-the-art techniques and
can be checked with our new proof checker tool PacTrim in a fraction of the
time needed for verification. Our experiments produce small polynomial proofs
which certify the correctness of certain multipliers. The theoretical analysis in [3]
gives much larger polynomial upper bounds (for clausal resolution proofs).

To explore the connection between PAC and clausal proof systems, such
as RUP and DRAT [17], is an interesting subject for future work, as well as
embedding PAC into more general systems, such as Isabelle [29].

We want to thank Thomas Sturm for pointing out the Rabinowitsch trick
to the second author and Jakob Nordström for discussions on the polynomial
calculus and Nullstellensatz proof systems. This work is supported by Austrian
Science Fund (FWF), NFN S11408-N23 (RiSE), Y464-N18, SFB F5004.
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