CEUR-WS.org/Vol-2150/HAHA_paperl.pdf

INGEOTEC at IberEval 2018 Task HaHa: pTC
and EvoMSA to Detect and Score Humor in Texts

José Ortiz-Bejar!3, Vladimir Salgado®, Mario
Graff?3, Daniela Moctezuma®#, Sabino Miranda-Jiménez?3, and Eric S. Tellez?3

! Universidad Michoacana de San Nicolas de Hidalgo, México
jortiz@umich.mx
2 CONACyT Consejo Nacional de Ciencia y Tecnologia,
Direccién de Cétedras, México
3 INFOTEC Centro de Investigacién e Innovacién en Tecnologfas
de la Informacién y Comunicacién, México
{vladimir.salgado,mario.graff,sabino.miranda,eric.tellez}@infotec.mx
1 Centro de Investigacién en Ciencias de Informacién Geoespacial A.C., México
daniela.moctezuma@centrogeo.edu.mx

Abstract. This paper describes our participation in Humor Analysis based
on Human Annotation (HAHA) task on IberEval’2018. The classification
task is tackled using our previous work on creating a multilingual senti-
ment analysis classifier (EvoMSA) and our generic text categorization and
regression system (uTC) as a solution for the regression task.

Keywords: Sentiment Analysis - Text Categorization - Genetic Program-
ming.

1 Introduction

The use of humor for communicating ideas is a human resource that can have a
multitude of meanings and forms. An idea can be explicitly expressed to be fun, or
it can be found to be humorous after a long conscientious reflexion. It is also possible
to understand that something is funny because of happiness or sadness. Moreover,
the humorous can be constructed based on truth or falseness, or it can be subtle
or cynic. Finding humor in some situation is many times a consequence of personal
and social experiences, language variations, culture, etc.

Learning to detect humor through a machine learning supervised approach based
on labeled examples of what is a joke or not, is pretty hard, due to the complexities
above mentioned, i.e., not even humans have a clear consensus of what is humorous
or its degree of fun. However, based on an extensive enough knowledge database,
a proper model of the text, and a learning algorithm, the identification process can
be tackled more or less effectively.

To find solutions about this area, IberEval-2018 forum ran a task named Humor
Analysis based on Human Annotation (HAHA) where a set of human-labeled mes-
sages from Twitter are provided to train and test algorithms for humor identification
(classification) or ranking (regression). More detailed, each text is labeled as humorous
or not humorous; a score of the humor-intensity is also given to define a rank problem.

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

In this paper, our solution to solve this problem is described. This paper is organized
as follows, in Section an agnostic approach to tackle humor detection is explained,
in Section 2 the task is described. Proposed solution is presented in Section 3. All the
results and experimental methodology are discussed in Section , and finally Section
5 concludes.

1.1 An generic approach to humor detection

Let us introduce some necessary notation before we dive into the main discussion.
Let T be the set of all texts, and t; will refer to some t; €T Let © be the set of labels
for each 6; and is defined over {0,1}, such that §; =0 implies that ¢; is not humorous
expression, while 6; =1 entails that ¢; is humorous. The set of real values in [0,5]
is named as Y, and each y; €Y is the average funniness for each t; € T'. Finally, let
X be a vector space related to the text T.

Figure 1 illustrates our generic supervised model for humor classification and
regression. The process starts with the set T and its associated ©; then, the idea
is to create a vector space X that will be used to train a classifier.

The vector space is created, firstly, normalizing and transforming the text; secondly,
the processed text is tokenized using multiple schemes like word n-grams, character
g-grams, and skip-grams; and, this bag of tokens is vectorized through a weighting
scheme. Finally, T is transformed into the vector space to train a classifier, along
with labels 6.

A similar process is necessary to create a regressor, using Y instead of ©. The model’s
quality depends on the entire pipeline. The entire process is documented in [11].

Figure 1 describes the work-flow of the training process. The prediction process is
almost the same, that is, the unknown text ¢, has to be transformed into a vector z,
by using the same preprocessing, tokenization, and term weighting steps, such that
the classifier observes the new vector in the same space of the training set. Again,
the procedure is quite similar for regression analysis.

(1) vsM = X }= Classifier

Y

or
Y/O > Regressor

Fig. 1. The generic diagram for our humor classification and regression system.

There are available many tools to model texts, for example, gensim [9], nitk [1],
fastText[6]. The main drawback for these approaches is that all of them have a set of pa-
rameters that should be tunned and wrong parameters selection may lead to generate
features (vectors) of low quality, resulting this in a poor performance for classifica-
tion/regression tasks. As exploring all possible parameters combination is prohibitive
and finding a good parameter set of values is highly dependent of the problem, one
simple approach is to perform a search over parameter space and use the parameters
with the best performance over a cross-validation simulation for a particular dataset.

196

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

2 Task Description

Humor Analysis based on Human Annotation (HAHA) asks for systems that classify

tweets, in the Spanish language, as humorous or not. Also, it asks for systems that

determine (rank) how funny the tweets are. Those two tasks are described by HAHA
organizers as follows:

Humor detection: determining if a tweet is a joke or not (intended humor by the
author or not). The results of this task will be measured using F-measure for the
humorous category and accuracy. F-measure is the primary measure for this task.

Funniness score prediction: predicting a funniness score value (average stars)
for a tweet in a 5-star ranking, supposing it is a joke. The results of this task will
be measured using root-mean-squared error (RMSE).

The first task can be solved as a classification problem, while the second one can

be tackled as a regression problem. The following sections describe pTC and fast Text

and how we use these tools for our solution.

In this task, the training set provided consists of a corpus of 20000 crowd-annotated
tweets, as described in [2], divided into 16000 tweets for training and 4000 tweets
for the test dataset. Multiple annotators evaluated each tweet, and each annotation
consists of the class (humorous or not) and the intensity (number of stars 0-5). The
final label is determined using a voting scheme. Table 2 shows an example of the
content of the provided dataset.

Table 1. Humorous tweet example

Text La semana pasada mi hijo hizo un triple salto mortal
desde 20 metros de altura.
Es trapecista? - Era :(

Is humorous |True

Average stars|3.25

For task one text is humorous corresponds to the set of labels ©, while average
startsisused as Y.

3 Systems Description

Our best solutions are mainly based on following algorithms; uTC, a set of well-
known classifiers from scikit-learn [8] (Naive Bayes, Support Vector Machine and
NearestCentroid), several regressors also from scikit-learn (Kernel Ridge, Ridge,
Ada Boost, Decision trees and ElasticNet), BAMSA and EvoDAG [4], but also we
explored the use of fastText as classifier. In the following Sections, we describe several
approaches in more detail.

3.1 uTC

pTC [11] is a minimalistic and powerful library that generates text models maximizing
a performance measurement. It manages the entire pipeline of a text classifier, as spec-
ified in §1.1. Under the hood, TC uses a Support Vector Machine with a linear kernel

197

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

as the classifier. The core idea behind uTC is to define a parameter space describing a
massive number of text-classifiers. The problem is posed as a combinatorial problem,
and an efficient set of meta-heuristics are used to find very competitive solutions.

3.2 EvoDAG and EvoMSA

Evolving Directed Acyclic Graph (EvoDAG) is a steady-state Genetic Programming
system with tournament selection [3, 4]. The main characteristic of EvoDAG is that
the genetic operation is performed at the root. EvoDAG was inspired by the geometric
semantic crossover proposed in [7]. EvoMSA uses an EvoDAG classifier to perform
text classification, this approach is robust in problems with unbalanced classes.

3.3 B4MSA

The baseline algorithm for multilingual sentiment analysis (BAMSA) [10] is a sen-
timent classifier for informal text such as Twitter messages. The design is similar
to 4 TC, but the internal problem is solved differently, along with the use of specific
features for sentiment analysis and some language-dependent capabilities.

3.4 FastText

FastText [5] is a library for text classification and word vector representation. It
transforms text into continuous vectors that can later be used on any language related
task. FastText represents sentences with a weighted bag of words, and each word is
represented as a bag of character n-gram to create text vectors. This representation
is based on the skip-gram model [6] which take into account subword information and
sharing information across classes through a hidden representation. Also, it employs
a hierarchical softmax classifier that takes advantage of the unbalanced distribution
of the classes to speed up computation.

As uTC, we optimized many of the parameters of fastText along with the applied
preprocessing functions. We used random search over a state space for this purpose.

4 Experiments and results

We tested multiple approaches by using the tools above described. The experimental
setup consisted of using the set T" of 16000 tweets human annotated by the task
organizers. Firstly, T was split in training (7}) and validation (7;,) sets following
a 80-20 proportion. Organizer provided data in CSV format, so we need to convert
them to the native formats of 4TC and EvoMSA; Appendix A detail system usage
and required formats.

4.1 Classification task

Our first intent was to use yTC and FastText with its default parameters. Further
improvements were achieved by optimizing FastText parameters and using a Naive
Bayes classifier with pTC. We used fastText with default parameters, nevertheless

198

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

after optimizing the learning rate (Ir), vector dimension (dim), size of word n-grams
(wordNgrams), window size (ws), and number of epochs (epoch), we obtained better
performance. The default values for these parameters were Ir = 0.1, dim = 100,
wordN grams=1, ws=3 and epoch=>5 and the ones found by optimization process
were [r=0.2, dim =300, wordN grams=>5, ws=>5, epoch=35. However, the best
results were reached with EvoMSA. All results shown in Table 2 were the ones
obtained over T,.

Table 2. Performance of the different systems on the validation set.

System Macro-F1 Macro-Recall Accuracy F1

EvoMSA 0.8440 0.8454 0.8553 0.8021
wTC NaiveBayes (macrofl) 0.8342 0.8268 0.8506 0.7821
wTC (LSVM) 0.8238 0.8237 0.8372 0.7751
FastText (optimized parameters)| 0.7976 0.7840 0.8241 0.7244
FastText (default parameters) 0.6673 0.6604 0.7209 0.5337

Only results for EvoMSA and pTC with Naive Bayes were submitted to the contest
score system (best result). Table 3 shows a summary of the performance of the
top three participants as well as the baselines set by the organizes. The best result
corresponds to the model generated with EvoMSA. It is relevant to mention that
F1 score was used to rank the participants.

Table 3. Performance on the test set

Team Accuracy Precision Recall F1

INGEOTEC| 0.8452 0.7796 0.8157 0.7972
UO_UPV 0.8455 0.8158 0.7567 0.7851
ELiRF-UPV| 0.8367 0.8046 0.7426 0.7724
baseline 0.4915 0.3645 0.4886 0.4175
baseline 0.6595 0.9392 0.0932 0.1695

4.2 Regression

For the second subtask, we tested all the regression algorithms in scikit-learn which
support sparse vectors over the space vector X generated by pTC. The regressors
were trained with X; and validated at X,. As the average stars for the test set were
unknown and the organizers state that ...for task 2, it is important that all rows have
a predicted score. The scoring algorithm will check the ones that were appropriate
for evaluation; it was necessary to guess how RMSE scores were calculated. Three
scenarios were assumed: Firstly, RMSE was calculated over all predicted scores
(using all validation set); secondly, score value was calculated only for the samples
labeled (real) as humorous; thirdly, RMSE was calculated for tweets predicted as
humorous. Table 4 shows the scores for the validation set T}, where the more stable
over the three consider cases were Ridge regressors.

As Kernel Ridge regression exhibited best average RMSE, it was used to predict
average stars scores over the test set. Table 5 shows the contest’s results.

199

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

Table 4. Regressors performance over validation set

Regressor RMSE(all) RMSE(real) RMSE (predicted) Average
Kernel Ridge 0.8255 0.9865 0.9816 0.9312
Ridge 0.8331 0.9941 0.9747 0.9339
Random Forest| 0.8406 0.9947 1.0813 0.9722
Ada Boost 1.2181 0.9899 0.8449 1.0176
Decision Tree 1.1487 1.3421 1.3822 1.2910
ElasticNet 1.1049 1.4555 1.5220 1.3608
SGD 1.0597 1.4936 1.6100 1.3878

Table 5. Performance on the test set

Team ‘RMSE
INGEOTEC|0.9784
baseline 1.1419

UO_UPV 1.5919

5 Conclusions

This paper describes the performance of the INGEOTEC team at HAHA’18, to the
best of our knowledge, the first humor analysis in the Spanish language (Mexican-
region). Our approach consists of well-tuned pTC and EvoMSA models to perform
both classification and regression tasks. Moreover, we include an appendix as a guide
to replicate our results.

References

1. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. 7 O’Reilly Media, Inc.” (2009)

2. Castro, S., Chiruzzo, L., Rosd, A., Garat, D., Moncecchi, G.: A crowd-annotated
spanish corpus for humor analysis. In: Proceedings of SocialNLP 2018, The 6th
International Workshop on Natural Language Processing for Social Media (2018)

3. Graff, M., Tellez, E., Escalante, H., Miranda-Jiménez, S.: Semantic genetic programming
for sentiment analysis, vol. 663 (2017). https://doi.org/10.1007/978-3-319-44003-3_2

4. Graff, M., Tellez, E., Miranda-Jiménez, S., Escalante, H.: EvoDAG: A se-
mantic Genetic Programming Python library. In: 2016 IEEE International
Autumn Meeting on Power, Electronics and Computing, ROPEC 2016 (2017).
https://doi.org/10.1109/ROPEC.2016.7830633

5. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 2, Short Papers. pp. 427-431.
Association for Computational Linguistics (April 2017)

6. Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111-3119 (2013)

7. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming.
In: International Conference on Parallel Problem Solving from Nature. pp. 21-31.
Springer (2012)

200

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)

9. Rehiifek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora. In:
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. pp.
45-50. ELRA, Valletta, Malta (May 2010), http://is.muni.cz/publication/884893/en

10. Tellez, E.S., Miranda-Jiménez, S., Graff, M., Moctezuma, D., Suarez, R.R., Siordia,
O.S.: A simple approach to multilingual polarity classification in Twitter. Pattern
Recognition Letters 94, 68-74 (2017). https://doi.org/10.1016/j.patrec.2017.05.024

11. Tellez, E., Moctezuma, D., Miranda-Jiménez, S., Graff, M.: An automated text
categorization framework based on hyperparameter optimization. Knowledge-Based
Systems (2018). https://doi.org/10.1016/j.knosys.2018.03.003

A uTC and EvoMSA quick start guide

As we have mentioned earlier, our systems are publicly available, developed in Python
and to facilitate their use there is a command line interface (CLI).

The format used for the datasets, e.g., training set, is json per line, e.g., { “klass”= 0,
“text”: “good life” } where klass contains the label and text is the text to be classified.

A.1 EvoMSA

EvoMSA can be installed from different sources; however, the most accessible path
to install it is using conda with the following command:

conda install -c ingeotec evomsa

The first step in EvoMSA is to create the model, this is achieved with the following
command:

EvoMSA-train -n2 -o evomsa.model train.json

where -n2indicates to two cores, -0 specifies the model’s name, and train.json contains
the training set.

Once the model is created, it can be used to predict unseen instances with the
following command:

EvoMSA-predict -nl -o out.json -m evomsa.model test.json

where -n1 indicates to use one core, if it is omitted then the number of cores used
in training is used instead, -o specifies the output file, m is the model, and test.json
contains the file to be predicted.

A2 uTC

wTC is intentionally simple, so only a small number of features where implemented.
The number of dependencies is limited and fulfilled by almost any Scientific Python
distributions, e.g., Anaconda.

MicroTC can be easily installed in almost scientific python distribution.

201

Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018)

git clone https://github.com/INGEOTEC/microTC.git
cd microTC
python setup.py install --user

It supposes that git is installed in the system. If it is not available, it can be installed
using apt-get, yum, or downloading the latest version directly from the repository.

For any given text classification task, pTC will try to find the best text model
from all possible models as defined in the configuration space.

microTC-params -k3 -Smacrofl -s24 -n24 train-haha.json -o vsm.params

these parameters means:

— train-haha. json is database for HAHA as one json-dictionary per line with text
and klass keywords

— -k3: three folds

— -324: specifies that the parameter space should be sampled in 24 points and then
get the best among them, i.e. the sample size of an internal random search.

— -n24: let us specify the number of processes to be launch.

— -o0: vsm. params specifies the file to store the configurations found by the parameter
selection process, in best first order.

— -S or —score: the name of the fitness function.

— -H: indicates that a hill climbing search will be performed over the best result
found by random search.

These parameters have default values, such as no arguments are needed. The interested

reader is referred to the pTC page https://github.com/INGEOTEC /microtc.
Once a set of parameters is found the dataset train-haha. json, and the param-

eters in vsm. params can be used to train a model and save it in mtc.model using

the following command:

microtc-train -o mtc.model —-m vsm.params train-haha. json

the resulting model can be tested (i.e., test-haha.model) in a new test set. That
is, we can ask the classifier to label some database as follows:

microtc-predict -m mtc.model -o test-predicted.json test-haha. json
Finally, the prediction performance is computed with the microtc-perf command.
microtc-perf gold.json test-predicted. json

This will show a number of scores in the screen.

{
"accuracy": 0.850625,
"f1_0": 0.8863528292914883,
"f1_1": 0.7821330902461258,
"macrofl1": 0.834242959768807,
"macroflaccuracy": 0.7096279176533414,
"macrorecall": 0.826785580669612,
"microfl": 0.850625,
"quadratic_weighted_kappa": 0.6690373825911413

202

