
Semi-Supervised Overlapping Community
Finding with Pairwise Constraints

Elham Alghamdi and Derek Greene

School of Computer Science & Informatics, University College Dublin
elham.alghamdi@ucdconnect.ie,derek.greene@ucd.ie

Abstract. In complex networks, we say that a network has community
structure if subsets of its nodes form dense, highly-connected groups.
Algorithms for detecting communities are generally unsupervised, rely-
ing solely on the network topology. However, such algorithms can often
fail to uncover structure that reflects the underlying communities in the
data, particularly when those communities are highly overlapping. One
of the ways to improve accuracy is by harnessing additional background
information (e.g. from domain experts), which can be used as a source
of constraints to guide the community detection process. In this work,
we explore the potential of semi-supervised strategies to improve algo-
rithms for finding overlapping communities in networks. Specifically, we
propose a greedy approach for finding communities using a limited num-
ber of pairwise constraints.

1 Introduction

Many applications of machine learning do not neatly correspond to the standard
distinction between supervised and unsupervised learning [6]. In many domains,
a limited degree of background knowledge will be available. Often supervision
will take the form of pairwise constraints, which describe the relations between
pairs of data objects. Such constraints have been used to guide and improve the
usefulness of clustering algorithms [4]. The idea of semi-supervised learning also
extends to the area of network analysis. Tasks such as community detection can
potentially benefit from the introduction of limited supervision originating from
individual domain experts or crowdsourcing, where this knowledge might be
encoded as constraints indicating that a pair of nodes should always be assigned
to the same community or should never be assigned to the same community.
By harnessing this knowledge, we can potentially uncover communities of nodes
which are difficult to identify when analyzing large or noisy networks.

Initial work in community detection focused on the development of algo-
rithms which produce disjoint groups, where each node belongs one community
[5]. However, in many real-world networks, nodes will naturally belong to mul-
tiple communities. In the case of both online and offline social networks, we can
observe pervasive overlap where individuals belong to many highly-overlapping
social groups [2]. More recently, overlapping community finding algorithms have
been developed for application to these real networks [2, 16]. In contrast, work



on semi-supervised community finding continues to focus on cases where com-
munities are required to be disjoint.

In this paper, we propose a semi-supervised approach for community find-
ing, based on the concept of greedy clique expansion [16], which we refer to as
Pairwise Constrained GCE (PC-GCE). We introduce must-link and cannot-link
constraints to both the initialization phase of the process and to the subse-
quent community expansion process. Experimental evaluations on benchmark
synthetic networks demonstrate that the introduction of a relatively small num-
ber of constraints can improve our ability to correctly uncover the underlying
communities in these networks.

The remainder of this paper is structured as follows: Section 2 provides a
summary of relevant work pertaining to semi-supervised learning and commu-
nity finding. In Section 3 we describe the proposed approach for community
finding. To demonstrate the effectiveness of the approach, in Section 4 we per-
form a benchmarking evaluation on several synthetic networks. Finally, Section
5 presents concluding remarks and suggestions for extending this work.

2 Related Work

2.1 Community Finding

Finding non-overlapping communities. Algorithms in this context can be
broadly grouped into three types. (1) Hierarchical algorithms construct a tree of
communities based on the network topology. These algorithms can be one of two
types: divisive algorithms [10] or agglomerative algorithms [7]. (2) Modularity-
based algorithms optimize the well-known modularity objective function to un-
cover communities in the network [21]. (3) Other algorithms. This category in-
cludes algorithms based on label propagation approach, spectral algorithms that
make use of the eigenvectors of Laplacian matrix or standard matrix, and meth-
ods based on statistical models [9].

Finding overlapping communities. Existing algorithms in this context can
be classified into four main categories. (1) Node seeds and local expansion. These
algorithms detect communities by starting from a node or a group of nodes, then
expanding them into a community using a quality function. OSLOM [13] is an
example of such an algorithm, which uses a statistical function to evaluate the
node value to expand it to a community. Another example is MOSES [20], which
is an algorithm based on a statistical model and uses an objective function as a
greedy optimization technique. (2) Clique expansion. This type of method uses
a group of fully-connected nodes, called a clique, as the starting point for expan-
sion. CFinder [1] and Greedy Clique Expansion (GCE) [16] are examples of this
type of algorithm. (3) Link clustering. This category of algorithms detects com-
munities by splitting the links rather than the nodes [3]. (4) Label propagation.
This strategy classifies each node into a community based on its neighboring
nodes affinities. An example is the COPRA algorithm [11].



2.2 Semi-Supervised Learning

Several forms of prior knowledge have been used to guide the community detec-
tion process. The most widely-used has been pairwise constraints (”must-link”
or ”cannot-link”), which indicate that two nodes must be in the same community
or must be in different communities. Such constraints have been implemented in
several algorithms, including a modularity-based method [18], a spectral analysis
method [12, 23], and methods based on matrix factorization [22, 23]. Instead of
constraints, other algorithms use node labels as prior knowledge to improve the
process of community detection [17]. In [19], the authors propose a method that
uses a semi-supervised label propagation algorithm based on node labels and
negative information, where a node does not belong to a specific community.

The clear majority of semi-supervised algorithms in this area aim at detecting
disjoint communities, whereas many real-world networks contain overlapping
communities [1]. To the best of our knowledge, very little work has been done
in the context of finding overlapping communities context. In [8], a small set of
nodes called seed nodes was used, whose affinities to a community is provided
as prior knowledge to infer the rest of the nodes affinities in the network. In the
remainder of this paper we focus on the problem of semi-supervised community
finding suitable for application to networks containing overlapping communities.

3 Methods

3.1 Greedy Clique Expansion (GCE)

The GCE [16] community finding algorithm initially finds maximal cliques as
seeds, and subsequently expands these seeds into larger communities in a greedy
fashion, by optimizing a local fitness function. Given a network G, a user-
specified minimum clique size k, and a minimum community distance e, the
GCE algorithm involves the following steps:

1. Find the seeds, which are all maximal cliques in G with at least k nodes.
2. Choose the largest unexpanded seed and greedily expand it into a candidate

community C′ by using a community fitness function FS until adding any
node would not increase the fitness value.

3. Test the distance between C′ and all previously accepted communities. If
the distance between C′ and an existing community C is < e, then C and
C′ are deemed to be near-duplicates, so discard C′. Otherwise, accept C′.

4. Repeat steps 2 and 3 until no more seeds remain

GCE employs a fitness function defined [14] to expand each seed, which defines
the fitness community of a given community S in terms of its internal and
external degrees (kin and kout) as follows

FS =
kSin

(kSin + kSout)
α

(1)



where the parameter α typically takes values in the range [0.9, 1.5]. Generally,
we can summarize the greedy expansion step using the fitness function FS as
follows:

1. For each node v in the frontier of a given seed S, calculate v’s fitness value,
i.e., the amount by which the community fitness of S would change if the
node v was added to S.

2. Choose the node that has the maximum fitness value, vmax.
3. If the fitness value vmax is positive, then insert the node v into S and go

back to Step 1. Otherwise, terminate and return S.

To discard near-duplicate communities in Step 4 of the GCE algorithm, the
authors proposed the use of an overlap-based measure of distance between two
communities:

δE(S, S′) = 1− |S ∩ S′|
min(|S|, |S′|)

(2)

Given two communities S and S′, Eqn. 2 measures the number of nodes in the
smaller community that are not included in the larger one. So, for a given set of
communities, a near-duplicate community of a given community S would be all
the communities that are within a distance e of S.

3.2 Pairwise Constraints in Community Detection

Given a network that contains a set of nodes V , semi-supervised pairwise con-
straints typically take two possible forms:

1. Must-link constraints specify that two nodes must be in the same community.
Let CML be the must-link constraint set: ∀ vi, vj ∈ V where i 6= j, (vi, vj)
∈ CML indicates that the two nodes vi and vj must be assigned to the same
community.

2. Cannot-link constraints specify that two nodes must be in different commu-
nities. Let CCL be the cannot-link constraint set: ∀ vi, vj ∈ V where i 6= j,
(vi, vj) ∈ CCL indicates that the two nodes vi and vj must be assigned to
two distinct communities.

The simplest approach to selecting this form of constraints is to naively select
a pair of nodes (vi, vj) at random, and query the oracle about whether the pair
should share a must-link or cannot-link constraint. This process can be repeated
to select the required number of constraints or until some supervision budget is
exhausted.

In non-overlapping community finding, must-link constraints have what is
referred to as a transitive property, where a third must-link relationship can be
inferred from two other associated must-link constraint pairs. So, if (vi, vj) ∈
CML, and (vi, vk) ∈ CML, then we can also infer that (vj , vk) ∈ CML (see the
first example in Fig. 1).

However, incorporating constraints into the context of overlapping commu-
nities is more challenging. This is because the transitive property does not hold



!"
!#!$

%& %'
!"
!#!$

%& %'
!"
!#!$

%& %'

1Non-overlapping Case Overlapping Case

Fig. 1: In the non-overlapping context, the transitive property allows us to infer a third
must-link constraint from two existing must-link constraints. However, this does not
automatically apply in the overlapping context, where two possible situations exist.

!" !#
!" !$
!" !%
!" !&
!' !(

!) !*
!+ !,
!& !%
!# !&
!$ !%

!" !#
!" !$
!" !%
!" !&
!' !(

!) !*
!+ !,
!- !,
!. !/
!0 !1
!& !%
!# !&
!$ !%
!$ !#

Must-link 
Set

Cannot-link 
Set

Must-link 
Set

Cannot-link 
Set

Fig. 2: Example of expanding 5 pairwise constraints. Inserting the derived cannot-link
pairs from all connected must-link pairs will double the size of the cannot-link set.

here (see the second example in Fig. 1). Specifically, if (vi, vj) ∈ CML, and (vi, vk)
∈ CML, there are two possible scenarios for the pair (vj , vk). It can be the case
that either (vj , vk) ∈ CML or (vj , vk) ∈ CCL. This is because an overlapping
node vj can have a must-link constraint with both vi and vi, yet these two nodes
could belong to two different communities. However, it is also possible that all
three nodes are in fact in the same community. Unless we explicitly inform the
algorithm about whether a must-link or cannot-link constraint exists for the pair
(vj , vk), we cannot reliably distinguish between the two cases. If the network has
highly-overlapping communities, then this problematic situation will occur more
frequently. If we naively attempt to incorporate pairwise constraints into over-
lapping community finding without taking this situation into account, it is likely
that the quality of the resulting communities can potentially decrease even as
more constraints are added.

To resolve this issue, after selecting pairwise constraints, we need to explicitly
detect every cannot-link pair that derived from any two connect must-link pairs
and insert it to the cannot link set. However, this will significantly increase the
set of cannot-link constraints. For example, if we want to feed only five pairwise
constraints, each as shown in Fig. 2, inserting the required cannot-link pairs



will double the size of the cannot-link set. In the next section, we introduce an
approach to address this issue.

3.3 Semi-Supervised GCE

We now describe our proposed approach for overlapping community finding
with limited supervision, referred to as Pairwise Constrained GCE (PC-GCE).
This approach consists of two stages: The first stage includes selecting and pre-
processing constraints and resolves the problem of the lack of the transitive
property for must-link constraints in the context of overlapping communities.
The second stage supplies the resulting constraints to the GCE algorithm to
process them during community detection. In the following, these stages are de-
scribed in more detail.

Stage 1: Selecting and pre-processing constraints. In this stage, we can
treat the set of pairwise constraints as a new graph, where an edge exists between
two nodes from the original network if they share a pairwise constraint (either
must-link or cannot-link). Then we look for all possible forbidden triads among
the nodes involved in the must-link set. Given three nodes A, B, C, a forbidden
triad (or open triad) occurs when A is connected to B and C, but no edge exists
between B and C. In our pre-processing step, we look for such cases — i.e. where
we do not know whether a must-link or cannot-link exists between a pair of nodes
B and C. To control the size of the constraints set, we greedily expand it until
we reach a pre-defined maximum size. This stage can be summarized as follows
(see also Fig. 3):

1. Choose a small initial random set of both must-link and cannot-link sets.
2. Find all possible forbidden triad cases in the must-link set to query the oracle

about their relationship.
3. If their relationship is must-link insert it into must-link set, otherwise insert

it into cannot-link set.
4. Repeat all steps until the set reaches the maximum size.

At the end of this stage, the pairwise constraints set is ready to be supplied to
the GCE algorithm for community detection.
Stage 2: Pairwise Constrained GCE (PC-GCE). During the community
detection phase, we incorporate only cannot-link constraints into the existing
GCE algorithm as follows (see Fig. 4 for an illustration):

1. Find seeds, which are all maximal cliques in G with at least k nodes.
2. Choose the largest unexpanded seed and greedily expand it to a candidate

community C′ by using a community fitness function (Eqn. 1) until adding
any node no longer increases the fitness value. However, during this expan-
sion process, do not add any node, which has a cannot link relationship with
any existing node in the seed.

3. Check for the existence of any cannot-link constraints among all pairs of
nodes in C′. If such a pair exists, calculate the fitness for both nodes relative
to C′, and remove the one with the lower value.



4. Test the distance between the community C′ and all of the already accepted
communities, using Eqn. 2. If the distance between C′ and any accepted
community C is <e, then C and C′ are near-duplicates, then discard C′.
Otherwise, accept C′.

5. Go back to Step 2 and repeat the process until no seeds remain.

The justification for using only cannot-link constraints in the community de-
tection process is as follows: because of the greedy nature of the seed expansion
step, incorporating must-link constraints into this step results in a smaller num-
ber of considerably larger communities. Mainly using the fitness function as a
technique of greedy local optimization to expand clique to community already
achieves some of the must-link relationships, and processing cannot-link set will
mostly detect the pairs that derived from two connected must-link pairs. Thus,
using must-link set to be explicitly processed by the algorithm will be as pro-
cessing extra non-informative constraints which cause noise to the algorithm and
reduction of the accuracy.

4 Evaluation

In this section, the performance of the Pairwise Constrained GCE algorithm
(PC-GCE) is evaluated by running experiments on two groups of synthetic
benchmark networks containing overlapping communities. Since, to the best of
our knowledge, no work has been conducted in the literature regarding pair-
wise constrained algorithms for finding overlapping communities, for the sake of
comparison, the PC-GCE results are compared with the following unsupervised
overlapping community detection algorithms: standard GCE [16], OSLOM [13],
MOSES [20], and COPRA [1].

4.1 Data

The synthetic networks used in our experiments is generated using the widely-
used LFR benchmark generator [15], which can produce networks with properties

Must Cannot Must Cannot Must Cannot

Step 1: Generate 
small initial random 
set of constraints.

Step 2: Find all instances of 
forbidden triads among the 
must-link constraints.

Step 3: Query the 
oracle for constraints 
for the missing pairs.

Step 4: Generate 
another random 
set of constraints.

Fig. 3: An illustration of the four steps involved in Stage 1 of semi-supervised GCE.



Step 1: Detect all maximal 
cliques in the network 
containing at least k nodes.

Step 2: Expand each seed, 
skipping any node that has a 
cannot-link with any existing 
node in the current seed.

Step 4: If C' overlaps with 
any previously accepted 
community, then discard it. 
Otherwise, accept C'.

Step 3: Process the 
cannot-link set for each 
resulting community C'.

Fig. 4: An illustration of the four steps involved in Stage 2 of semi-supervised GCE.

similar to real-world networks, which also contain embedded ground truth com-
munities. The full set of parameter values used to generate the networks is listed
in Table 1.

In our experiments, we generate two different groups of networks, containing
small and large communities respectively. Small communities have 10–50 nodes,
while large communities have 20–100 nodes. Each group consists of 16 networks
with different combinations of the two parameters Om and On. The parameter
Om controls the number of communities per node, and On controls the num-
ber of overlapping nodes. For the first network in each set, all nodes belong to
two communities (Om = 2), then for each successive network this parameter
increments in value by 1 until Om = 5 is reached. For each value taken by the
parameter Om, we increase the fraction of overlapping nodes On by 25% until
100% of the nodes belong to more than one community.

Table 1: Parameter values used for the generation of LFR synthetic networks.

Description Value Description Value

N Number of nodes 1000 t1 Degree exponent 2

k Average degree 20 t2 Community exponent 2

Kmax Max degree 60 M Mixing parameter 0.2

Cmin Min community size 10/20 On Num of overlapping nodes 250-1000

Cmax Max community size 50/100 Om Communities per node 1-5

4.2 Experimental Setup

To compare the performance of the different algorithms in our experiments, we
use the overlapping form of the standard Normalized Mutual Information (NMI)
measure, as proposed in [14]. This measures the level of agreement between the
communities produced by an algorithm on a network and the ground truth com-
munities in that network. A value close to 1 indicates a high level of agreement,
while a value close to 0 indicates that the algorithms communities are no better
than random.



We have conducted two experiments. The first experiment aims to measure
the current performance of the selected community detection algorithms. We
use these values as a baseline for evaluating the performance of the proposed
PC-GCE algorithm. The second experiment evaluates the performance of the
PC-GCE on differing numbers of constraints, ranging from 1% to 5% of the
total number of possible constraints pairs in each network. In this experiment,
the initial pairwise constraints are selected at random. Therefore, we repeat the
process over 20 runs and average the NMI scores. Finally, we compare the results
obtained from PC-GCE with the selected benchmark algorithms.

Table 3: NMI scores of benchmark algorithms on small and large community networks.

Small Comm.
Comm. per node (Om)

MOSES
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.8392 0.8127 0.6896 0.6057
500 0.8357 0.6911 0.5836 0.4681
750 0.7729 0.5915 0.4474 0.2527
1000 0.7206 0.5188 0.2252 0.1171

COPRA
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.7536 0.6138 0.4951 0.3595
500 0.5664 0.0000 0.0000 0.0000
750 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000

OSLOM
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.9733 0.9147 0.7963 0.7169
500 0.9435 0.8496 0.6020 0.3172
750 0.9240 0.6789 0.2299 0.0777
1000 0.8953 0.3717 0.0098 0.0000

Large Comm.
Comm. per node (Om)

MOSES
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.6140 0.5448 0.4595 0.4244
500 0.5338 0.4497 0.3495 0.3198
750 0.4789 0.3435 0.1795 0.0960
1000 0.5741 0.1989 0.0191 0.0000

COPRA
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.7121 0.6235 0.4844 0.4377
500 0.5217 0.0000 0.0000 0.0000
750 0.0000 0.0000 0.0000 0.0000
1000 0.0000 0.0000 0.0000 0.0000

OSLOM
2 3 4 5

Fraction of
overlapping
nodes (On)

250 0.9524 0.8601 0.7076 0.6425
500 0.9078 0.7375 0.4646 0.2285
750 0.9026 0.4909 0.1780 0.0725
1000 0.8618 0.1383 0.0000 0.0000

4.3 Results and Discussion

We have two baselines for comparison and evaluation of the results. Firstly, we
compare the accuracy of PC-GCE to standard GCE (Tables 2). Secondly, we
compare the accuracy of PC-GCE algorithm to the other benchmark algorithms
(Table 3).

As we observe from Tables 2, in most cases, regardless of the fraction of
overlapping nodes in the networks, PC-GCE outperforms the standard GCE
algorithm. To be more specific, for all measures of fraction of overlapping nodes,
as the percentage of pairwise constraints increases, the accuracy of PC-GCE also
improves. On the other hand, as we increase the fraction of overlapping nodes
On from 25% to 100% of the total number of nodes, the NMI of GCE drops to
0 for almost 60% of the total set of results. For instance, in the case of small
community networks, the NMI score of GCE drops from 0.764 to 0 for Om = 3,
and from 0.648 to 0 for Om = 4. In contrast, the PC-GCE algorithm shows a



Table 2: NMI scores using 0−5% of constraints on small and large community networks.

Small community networks

Comm. per node (Om)
2

0% 1% 2% 3% 4% 5%
GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.9932 0.9935 0.9936 0.9941 0.9939 0.9940
500 0.9660 0.9786 0.9858 0.9865 0.9896 0.9905
750 0.9300 0.9504 0.9656 0.9715 0.9769 0.9815
1000 0.9378 0.9508 0.9576 0.9650 0.9698 0.9723

3
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.7637 0.7866 0.8004 0.8139 0.8309 0.8432
500 0.7070 0.7579 0.8064 0.8305 0.8562 0.8696
750 0.6276 0.6856 0.7231 0.7586 0.7760 0.8002
1000 0.0000 0.6239 0.6343 0.6538 0.6650 0.6721

4
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.6484 0.6167 0.6389 0.6612 0.6743 0.7037
500 0.3812 0.4184 0.4921 0.5411 0.5754 0.6055
750 0.0000 0.3156 0.3716 0.4074 0.4303 0.4536
1000 0.0000 0.1747 0.1933 0.2062 0.2159 0.2275

5
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.4702 0.4751 0.4909 0.5085 0.5114 0.5256
500 0.2015 0.2038 0.2429 0.2673 0.3007 0.3135
750 0.0000 0.1053 0.1315 0.1486 0.1624 0.1732
1000 0.0000 0.0160 0.0177 0.0190 0.0216 0.0218

Large community networks

Comm. per node (Om)
2

0% 1% 2% 3% 4% 5%
GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.9693 0.9704 0.9713 0.9722 0.9721 0.9724
500 0.9852 0.9902 0.9923 0.9930 0.9954 0.9957
750 0.9443 0.9652 0.9750 0.9784 0.9816 0.9860
1000 0.8209 0.8620 0.8843 0.8861 0.8895 0.8947

3
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.6542 0.6756 0.6760 0.6768 0.6773 0.6776
500 0.6276 0.6660 0.6855 0.6932 0.7042 0.7087
750 0.4953 0.5646 0.5865 0.5963 0.6224 0.6240
1000 0.2577 0.2889 0.3075 0.3250 0.3315 0.3495

4
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.5590 0.5596 0.5606 0.5617 0.5611 0.5623
500 0.4402 0.4623 0.4752 0.4862 0.4886 0.4954
750 0.1031 0.1281 0.1587 0.1665 0.1754 0.1774
1000 0.0000 0.0106 0.0110 0.0142 0.0153 0.0211

5
0% 1% 2% 3% 4% 5%

GCE PCGCE PCGCE PCGCE PCGCE PCGCE

Fraction of overlapping nodes (On)

250 0.4667 0.4669 0.4672 0.4680 0.4686 0.4687
500 0.1980 0.2083 0.2315 0.2489 0.2589 0.2693
750 0.0000 0.0637 0.0784 0.0798 0.0762 0.0815
1000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000



moderate decrease of accuracy as the value of On increases. This indicates that
PC-GCE outperform the standard GCE with highly-overlapping communities.
However, in general, both algorithms show better performance on the networks
containing smaller communities.

We can see from Table 3 that PC-GCE algorithm outperforms COPRA al-
gorithm on both types of networks. When considering the smallest fraction of
overlapping nodes (i.e., On = 250), COPRA performs almost comparably with
PC-GCE. However, as the value of On increases, the performance of COPRA
drops to 0, whereas the performance of PC-GCE shows only a slight decrease in
the accuracy. Thus, it can be concluded that PC-GCE outperforms COPRA on
highly overlapping community networks. On the other hand, PC-GCE outper-
forms MOSES on large networks but shows almost similar performance on small
networks. Finally, the NMI scores exhibit comparable overall performance with
PC-GCE in the case of OSLOM, on both types of networks.

5 Conclusion

In this paper, we have explored the potential of semi-supervised strategies to im-
prove existing algorithms for finding overlapping communities in networks, and a
new algorithm for detecting overlapping communities with pairwise constraints
(PC-GCE) is proposed. Extensive experiments were carried out, and the results
show GCE algorithm with constraints (PC-GCE) outperforms unconstrained al-
gorithms with highly-overlapping communities, and its performance improves
with increasing number of pairwise constraints. This shows the potential of us-
ing semi-supervised strategies for finding overlapping communities. However, in
most networks, only a small percentage of the nodes have informative pairwise
constraints. Thus, using random selection of pairwise constraints could have
adverse effects by decreasing the accuracy of the community detection process
caused by the selection of non-informative nodes. Therefore, our future work
will aim to apply ideas from active learning for selecting informative pairwise
constraints. We will also explore the effect of incorrect “noisy” constraints and
how they affect algorithm performance.

Acknowledgements. This publication has partly emanated from research con-
ducted with the financial support of Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289.

References

1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: Cfinder: locating
cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–
1023 (2006)

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761–764 (2010)

3. Amelio, A., Pizzuti, C.: Overlapping community discovery methods: a survey. In:
Social Networks: Analysis and Case Studies, pp. 105–125. Springer (2014)



4. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In: Proc. 10th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining. pp. 59–68 (2004)

5. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. J. Stat. Mech 10008 (2008)

6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

7. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Physical review E 70(6), 066111 (2004)

8. Dreier, J., Kuinke, P., Przybylski, R., Reidl, F., Rossmanith, P., Sikdar, S.: Over-
lapping communities in social networks. arXiv preprint arXiv:1412.4973 (2014)

9. Fortunato, S.: Community detection in graphs. Physics reports 486(3), 75–174
(2010)

10. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proceedings of the national academy of sciences 99(12), 7821–7826 (2002)

11. Gregory, S.: Finding overlapping communities in networks by label propagation.
New Journal of Physics 12(10), 103018 (2010)

12. Habashi, S., Ghanem, N.M., Ismail, M.A.: Enhanced community detection in social
networks using active spectral clustering. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing. pp. 1178–1181. ACM (2016)

13. Lancichinetti, A., Radicchi, F., Ramasco, J., Fortunato, S., Ben-Jacob, E.: Finding
statistically significant communities in networks. PLoS ONE 6(4), e18961 (2011)

14. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hier-
archical community structure in complex networks. New Journal of Physics 11(3),
033015 (2009)

15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical review E 78(4), 046110 (2008)

16. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. In: Workshop on Social Network Mining and
Analysis (2010)

17. Leng, M., Yao, Y., Cheng, J., Lv, W., Chen, X.: Active semi-supervised commu-
nity detection algorithm with label propagation. In: International Conference on
Database Systems for Advanced Applications. pp. 324–338. Springer (2013)

18. Li, L., Du, M., Liu, G., Hu, X., Wu, G.: Extremal optimization-based semi-
supervised algorithm with conflict pairwise constraints for community detec-
tion. In: Advances in Social Networks Analysis and Mining (ASONAM), 2014
IEEE/ACM International Conference on. pp. 180–187. IEEE (2014)

19. Liu, D., Duan, D., Sui, S., Song, G.: Effective semi-supervised community detection
using negative information. Mathematical Problems in Engineering 2015 (2015)

20. McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-
based overlapping seed expansion. In: Advances in Social Networks Analysis and
Mining (ASONAM), 2010 International Conference on. pp. 112–119. IEEE (2010)

21. Newman, M.E.: Modularity and community structure in networks. Proceedings of
the national academy of sciences 103(23), 8577–8582 (2006)

22. Shi, X., Lu, H., He, Y., He, S.: Community detection in social network with pair-
wisely constrained symmetric non-negative matrix factorization. In: Proceedings
of the 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015. pp. 541–546. ACM (2015)

23. Zhang, Z.Y.: Community structure detection in complex networks with partial
background information. EPL (europhysics letters) 101(4), 48005 (2013)


