
Improving the Efficiency of Dislocality Constraints
for an Automated Software Deployment in

Safety-Critical Systems
Dr. Robert Hilbrich

German Aerospace Center
Rutherfordstr. 2

12489 Berlin, Germany
Email: robert.hilbrich@dlr.de

Dr. Michael Behrisch
German Aerospace Center

Rutherfordstr. 2
12489 Berlin, Germany

Email: michael.behrisch@dlr.de

Abstract—Mapping software components to hardware re-
sources is a central part of the systems engineering process. This
task can be automated by formalization and transformation into a
Constraint Satisfaction Problem and the subsequent application
of a constraint solver. The toolsuite ASSIST demonstrates the
feasibility of this concept. In ASSIST, dislocality requirements
can be specified for software components to constrain the set of
valid mapping solutions and to ensure reliability and fault toler-
ance of the system. Three approaches to model these dislocality
requirements with constraints are presented. They are compared
to each other based on twenty synthetic mapping examples.

I. INTRODUCTION

Engineering complex and safety-critical systems, such as
flight control systems aboard an airplane, is still challenging
and costly. Despite recent advancements in our model-based
tool suites and engineering methods, the design of these
systems still bears risk and uncertainties with regard to its
outcome.

The formalization and automation of crucial engineering
tasks appears to be a promising approach to tackle these
challenges [1], [2]. Systems in these areas are engineered to
implement a complex interplay between mechanical elements,
electronic components, as well as (embedded) software. There-
fore, their design has to mirror this interplay and requires the
development of a hardware and software architecture.

In practice, these architectures can often be developed
independent of each other, but their integration in the final
system requires a link between the software components and
their hardware resources. Creating this link is referred to as
the deployment of the software components. Constructing a
deployment requires the systems engineer to map software
components to resources and to schedule the access to shared
resources. Therefore, mapping refers to a spatial allocation,
while scheduling refers to a temporal allocation of software
components.

The construction of a deployment is an engineering task,
which not only affects the fulfillment of functional require-
ments by providing the necessary resources, but also affects
the satisfaction of non-functional requirements, such as safety
and reliability. Redundancy and fault tolerance can only be

achieved, if critical software components are deployed ac-
cordingly. Deploying software components is a very intricate
task with zero tolerance for errors as they may jeopardize
the correctness of the system. At the same time, it requires
a detailed understanding of the requirements of all software
components and the capabilities of all hardware resources in
the system. Due to the sensitivity and complexity of this task,
its formalization and automation is a valuable research goal.

II. AUTOMATED CONSTRUCTION OF DEPLOYMENTS

In order to achieve an automated construction of a de-
ployment and to argue its correctness, a formalization of the
mapping problem is required. For smaller mapping problems,
this has been successfully achieved based on Linear Integer
Programming [3], [4], SMT-based solvers [5] or evolutionary
algorithms [6]. However, these approaches reach their limits
when larger, real-world mapping problems are considered.
On the one hand, methods based on integer programming
techniques are typically unable to provide solutions in a short
timespan (20 minutes), when the complexity of the system
reaches the level of real-world systems. Heuristic approaches
based on evolutionary algorithms on the other hand are usually
unable to cope with limited gradient information to guide a
search process, because the design space of real-world systems
often contains many discontinuities.

The authors instead chose to transform a mapping problem
into a semantically equivalent Constraint Satisfaction Problem
(CSP) [7] and solve this CSP with Constraint Programming
techniques [8]. The advantages of using Constraint Program-
ming in comparison to other techniques lie in the availability
of powerful modeling elements, such as an allDifferent
constraint, and the ease with which custom search heuristics
can be implemented.

A. Constraint Satisfaction Problems
Constraint Programming refers to a set of techniques in ar-

tificial intelligence and operations research. These techniques
assist in finding solutions for problems based on variables,
which are affected by constraints. Each constraint defines valid

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 90



or invalid solutions for a subset of these variables. In this
paper, a subclass of constraint satisfaction problems is used
to express mapping problems: finite domain integer constraint
satisfaction problems in which each variable has a finite inte-
ger domain. Solutions for this problem class can be obtained
by applying a combination of search techniques – including
backtracking – and constraint propagation techniques for value
elimination.

To illustrate the modeling approach of Constraint Satis-
faction Problems, consider the well-known Map Coloring
problem as an example. This problem asks, whether it is
possible to color a map with only four colors in such a way,
that neighboring countries have different colors. It can be
formulated as a CSP by assigning an integer variable xi for
each country with the index i. The domain of each variable
corresponds to the four colors: Dxi = {0, 1, 2, 3}. In order to
model the restrictions of this problem, a constraint is added
for each pair of adjacent countries. If country xi is adjacent
to country xj , then xi 6= xj is required. The search algorithm
is now responsible to select a variable and test a value of its
domain. Assuming a simple “first variable, first value” strategy,
the variable x0 would be chosen and set to the value 0 as a test.
This would be propagated to all variables which are directly
linked to x0 by a constraint, so that the value 0 gets removed
from their domains. This removal may lead to other value
removals in indirectly linked variables and is processed until
a fix point is reached. If a contradiction is encountered or the
domain of a variable becomes empty, backtracking is initiated,
so that the next value of the variable x0 is tested. Otherwise,
the search algorithm continues with the next uninstantiated
variable.

This example also shows, that the propagation of the
NOTEQUAL constraint is weak, because it affects only two
variables and invalidates only 4 out of the 16 possible value
combinations between two variables.

B. Toolsuite ASSIST
As a proof of concept for the ongoing research toward an

automated construction of deployments based on Constraint
Satisfaction Problems, the toolsuite Architecture Synthesis
for Safety-Critical Systems (ASSIST) was developed by the
authors. It is publicly available and uses the constraint solver
Choco 4.0.6 [9] internally.

ASSIST allows a systems engineer to automatically con-
struct and optimize mappings based on textual specifications of
the software components and hardware resources, dislocality,
dissimilarity and colocality requirements, and also optimiza-
tion goals. The textual specifications in ASSIST conform to a
domain-specific language which allows to hide the intricacies
of a formal specification.

III. ENSURING FAULT TOLERANCE BY REQUIRING
DISLOCALITY

In order to achieve fault tolerance and reliability, it is
essential to support “significant differences” in the choice of
resources to which critical software components are deployed

to. For example, a simple redundancy requirement between
two software components, may force the systems engineer
to allocate these software components to different processing
boards in different locations aboard an airplane. Furthermore,
systematic errors and undetected design flaws in hardware
components may be addressed by choosing dissimilar hard-
ware resources, processors or memory blocks from different
vendors for example.

Due to the importance of choosing “different” resources
for fault tolerance and reliability in safety-critical systems,
engineering tools for an automated construction of deploy-
ments need to be able to fully support these choices. ASSIST
supports the engineer by offering dislocality and dissimilarity
requirements as part of the domain specific language. They can
be used to enforce “differences” for the choice of resources
during the mapping process. Finding an efficient formulation
to express the semantics of each requirement as a Constraint
Satisfaction Problem is challenging, but also essential in order
to provide an effective toolsuite for the engineering of safety-
critical systems.

In order to illustrate the challenges and to present specific
modeling improvements, the dislocality requirement is used
as an example in this paper. Please note, that the concepts
developed for dislocality requirements can also be applied to
dissimilarity requirements.

The semantics of a dislocality requirement can be illustrated
with the following deployment problem (see Figure 2). In
this example system, there are three applications consisting
of one or more tasks. Each task has to be mapped to exactly
one of the processors in the system. It is assumed, that
the processor contains multiple cores, so that multiple tasks
can be mapped to a single processor. However, in order to
ensure fault tolerance, a dislocality requirement is added for
all applications. This means, that the applications must not
share a processor, so that a faulty processor affects only one
application.

Expressing the basic deployment problem with constraints
is straight forward. Each task i in the system is represented
by an integer variable Xi. The domain of each variable Xi

corresponds to the indices of the n processors in the system
(Xi 2 {0, 1, . . . , n � 1}). In order to add the constraints
for the dislocality requirements, two cases have to be distin-
guished. In the simple case, in which all applications consist
of only one task, a dislocality can be enforced with a single
allDifferent constraint (see [10]) over all task variables
Xi. This case is depicted in Figure 2 (a). Fortunately, Choco 4
already contains an implementation for an allDifferent
constraint based on the algorithm of Rgin [11], so that the
simple case can be implemented.

In real-world systems, applications usually consist of more
than one task. Furthermore, tasks of the same application
usually share the same processor. This situation is more com-
plex and depicted in Figure 2 (b). Unfortunately, in this case,
the previous approach of applying a single allDifferent
constraint over all task variables Xi can no longer be used.
It would prevent solutions in which a processor is shared by

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 91



Fig. 1. Screenshot of the ASSIST User Interface

Processor 1 Processor 2 Processor 3 Processor 4

App C

Task C.1

App B

Task B.1

App A

Task A.1

(a) Simple Case

Processor 1 Processor 2 Processor 3 Processor 4

App C

Task C.1

App B

Task B.1

App A

Task A.1

Task A.2 Task B.2

(b) Complex Case

Fig. 2. An Example Deployment Problem - Mapping Tasks to Processors

multiple tasks of the same application.
The existing allDifferent constraint simply ensures,

that values for a list of variables are different. However,
the complex case requires an advanced allDifferent
constraint working with a list of a list of variables and ensuring
that the combined values for each list of variables are disjunct.
Unfortunately, such a constraint is neither part of the Global
Constraint Catalog [10] nor available in Choco 4.

IV. MODELING COMPLEX DISLOCALITY REQUIREMENTS

This section introduces three alternative implementations for
the semantics of an advanced allDifferent constraint.
Their performance and impact on resolution time will be
analyzed and compared to each other in the next section.

Before continuing with the description of possible imple-
mentations, the semantics of an advanced allDifferent
constraint should be described more precisely. For this pur-
pose, consider the example system in Figure 2 (b). It consists
of the applications A, B and C. Each of these applications
contains one or more tasks, i.e. A = {A1, A2}, B = {B1, B2}
and C = {C1}. An advanced allDifferent for all
applications would be working with a list of a list of variables,
for example:

allDifferent {{A1, A2}, {B1, B2}, {C1}}

Assuming that A? combines the values for each task in
application A:

A? 2 P(N) =
[

{Ai : Ai 2 A} (= A1 [A2)

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 92



and B? and C? do the same for the applications B and C,
then the advanced allDifferent constraint would ensure,
that the sets A?, B? and C? are pairwise disjunct.

Element-wise Approach

One option to implement the advanced allDifferent
constraint semantic is to apply the already existing
allDifferent constraint for every subset s with

s = {a, b, c | a 2 A, b 2 B, c 2 C}

For systems with a large amount of applications and more than
one task within each application, the amount of constraints,
that will be added to the constraint solver by this approach,
may significantly prolong the resolution time. However, this
approach can be realized with the tools already available in
Choco 4 and does not require any additional implementation
of custom propagators and constraints.

Instantiation-only Approach

In order to address the drawbacks of the first approach,
another option is to implement a custom constraint and prop-
agator for Choco 4, that is able to operate on a list of a list
of variables. For the sake of simplicity, the propagator should
only react on instantiation events for any of its variables. If
an instantiation is detected, then the value of the instantiated
variable will be removed from the values of all variables in
all of the other lists. This approach has the advantage, that
only one constraint needs to be added to the constraint solver
for each dislocality requirement. However, this instantiation-
only approach leads to a weak propagation as it only removes
values, when one of the variables is instantiated.

Combined Union-Variables and Instantiation-Only Approach

The third approach tries to build upon the instantiation-only
approach and improve the strength of its propagation. For this
purpose, a new integer variable X? will be added for each list
of task variables X = {X1, . . . , Xn} that were provided to the
advanced allDifferent constraint. The new variable X?

will contain the union of the remaining values of all variables
in X . This can be achieved with a custom propagator similar to
the already existing PropSetIntValuesUnion propagator
in Choco 4. With these new “union variables” being available,
adding a simple allDifferent constraint, which links all
of the union variables, should improve the effectiveness of the
propagation.

Please note, that these “union variables” must not be added
to the list of variables for branching as part of the search
strategy in Choco 4 as they will not always be resolved to
only one value if tasks of an application are deployed to
different processors. This approach will be combined with
the instantiation-only approach from the previous section. In
comparison to the instantiation-only approach, the handling of
union-variables requires the addition of a new variable and a
propagator for each list of variables, so there is some overhead
to be expected.

Based on the description of these three approaches to
implement the semantics of an advanced allDifferent
constraint, the next sections will describe experiments con-
ducted by the authors and preliminary results to assess and
compare the performance and efficiency of each approach.

V. EXPERIMENTS

Benchmarking the performance and efficiency of these
approaches requires several example to work on. For this
purpose, the authors developed a generator for synthetic
mapping problems that resemble the typical characteristics
of mapping problems encountered in safety-critical systems.
Twenty randomized examples with at least one solution were
generated for the experiments. They exhibit the following
properties.

In each example, there are two compartments, each contain-
ing between four and six boxes. Each box contains between
four and six processing boards and every processing board
is equipped with one or two processors each comprising of
up to four cores. The examples contain between 16 and 24
applications and each of these applications have between two
and eight tasks that need to be mapped to the cores on the
processors. All tasks of an application are required to be
placed on the same processing board to allow for memory-
based communication (colocality requirement). Finally, every
example features between 24 and 32 dislocality requirements
and each of these requirements refers to at least four and up
to six applications.

Every example was benchmarked on an Apple iMac 5k with
64GB of RAM by using ASSIST 2.3 and Choco 4.0.6. The
experiments were done with the Domain over Weighted Degree
as a variable selector strategy and Minimum Value First as a
value selector strategy. The examples are publicly available in
the ASSIST repository.

VI. RESULTS

The amount of constraints and variables are depicted for
each example and each approach in Figure 3 and Figure 4.
The results show, that the element-wise approach leads to a
substantial increase in the amount of constraints in the solver
in comparison to the other two approaches. However, the
increase of the variable count due to the addition of union-
variables for the implementation of the third approach appears
to be rather negligible.

The total resolution time until the first solution has been
reached is depicted in Figure 5. Please note the logarithmic
scale on the y-axis. The results demonstrate, that the resolution
time can be significantly reduced in all examples by adopting
the instantiation-only approach.

Further improvements to the instantiation-only approach
can be achieved by applying the combined approach, but the
additional gains are significantly smaller. In some examples,
the combined approach requires slightly more time for a
resolution. However, the time differences in these cases are
so small, that they may also be induced by external effects,

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 93



Fig. 3. Amount of constraints in the Choco solver in each example

Fig. 4. Amount of variables in the Choco solver in each example

Fig. 5. Resolution time (in ms) to reach the first solution in each example

Fig. 6. Amount of backtracking occurring in each example

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 94



such as garbage collection in Java or scheduling interferences
in the operating system.

Backtracking occurs, when the search process in the con-
straint solver encounters a fail event, i.e. a variable has an
empty domain after value propagation or one of the constraints
determines a contradiction. Figure 6 shows the amount of
backtracking that occurred before finding the first solution
in each example. One would assume, that the element-wise
approach exhibits the strongest propagation due to the large
amount of additional allDifferent constraints, so that the
amount of fails and backtracks might be smaller compared to
the other approaches. In fact, the results are not as clear-cut.
Some examples show, that the propagation of the element-
wise approach is significantly stronger compared to the other
approaches. However, there are also other examples in which
the situation is reversed.

VII. SUMMARY AND CONCLUSIONS

Ensuring significant differences in the choice of resources
to which software components in safety-critical systems are
deployed to, is essential for satisfying safety requirements and
facilitating fault tolerance. ASSIST is a toolsuite for system
engineers, which aims to automate the deployment of soft-
ware components to hardware resources by transforming this
mapping problem into an equivalent Constraint Satisfaction
Problem. In ASSIST, there are several means to require “dif-
ferences” in the choice of resources. Dislocality requirements
are one of those means and they are used as an example in
this paper to illustrate the challenge of finding an efficient
constraint model.

Three different approaches to implement the intended se-
mantics of dislocality requirements are presented. They specif-
ically address complex use-cases in which applications consist
of multiple tasks. While one of these approaches can be
realized without any customized constraints or propagators,
the other two approaches rely on custom implementations of
constraints and propagators as well as additional variables in
the third approach.

Experiments conducted with twenty synthesized mapping
examples for ASSIST show, that the implementation of custom
constraints and propagators is well worth the effort. They lead
to a substantial reduction in the resolution time with only min-
imal overhead due to the additional constraints and variables.
The results also indicate, that the element-wise approach,
which requires the highest amount of additional constraints,

does not always lead to the lowest rate of backtracks in the
examples.

ACKNOWLEDGMENT

The authors acknowledge the financial support for this
work by the Federal Ministry of Education and Research of
Germany (BMBF) in the project “ARAMiS II” (DLR, grant
identifier 01IS16025D).

REFERENCES

[1] R. Chapman, “Correctness by construction: putting engineering (back)
into software,” in Proceedings of the 2007 ACM international
conference on SIGAda annual international conference, ser. SIGAda
’07. New York, NY, USA: ACM, 2007, pp. 100–100. [Online].
Available: http://doi.acm.org/10.1145/1315580.1315605

[2] R. Hilbrich, Platzierung von Softwarekomponenten auf Mehrkernprozes-
soren: Automatisierte Konstruktion und Analyse für funktionssichere
Systeme. Springer Fachmedien Wiesbaden, 2015. [Online]. Available:
https://books.google.de/books?id=qu5rCgAAQBAJ

[3] W. Damm, A. Metzner, F. Eisenbrand, G. Shmonin, R. Wilhelm, and
S. Winkel, “Mapping Task-Graphs on Distributed ECU Networks:
Efficient Algorithms for Feasibility and Optimality,” in Embedded and
Real-Time Computing Systems and Applications, 2006. Proceedings.
12th IEEE International Conference on, 2006, pp. 87–90.

[4] S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs,
“Optimizing Automatic Deployment Using Non-functional Requirement
Annotations,” in Leveraging Applications of Formal Methods,
Verification and Validation, ser. Communications in Computer and
Information Science, T. Margaria and B. Steffen, Eds. Springer
Berlin Heidelberg, 2009, vol. 17, pp. 400–414. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-88479-8 28

[5] S. Voss and B. Schatz, “Deployment and Scheduling Synthesis for
Mixed-Critical Shared-Memory Applications,” in Engineering of Com-
puter Based Systems (ECBS), 2013 20th IEEE International Conference
and Workshops on the, 2013, pp. 100–109.

[6] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “ScatterD:
Spatial deployment optimization with hybrid heuristic/evolutionary al-
gorithms,” TAAS, vol. 6, no. 3, p. 18, 2011.

[7] K. R. Apt, Principles of constraint programming. Cambridge University
Press, 2003.

[8] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of
Constraint Programming. ELSEVIER SCIENCE & TECHNOLOGY,
2006. [Online]. Available: http://www.ebook.de/de/product/5834373/
handbook of constraint programming.html

[9] C. Prud’homme, J.-G. Fages, and X. Lorca, Choco Documentation,
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2016. [Online]. Available: http://www.choco-solver.org

[10] N. Beldiceanu, M. Carlsson, and J.-X. Rampo, “Global Constraint
Catalog,” online, SICS, Technical Report T2012:03, Feb. 2014, iSSN:
1100-3154. [Online]. Available: http://www.emn.fr/z-info/sdemasse/
gccat/

[11] J.-C. Régin, “A filtering algorithm for constraints of difference in
csps,” in Proceedings of the Twelfth National Conference on Artificial
Intelligence (Vol. 1), ser. AAAI ’94. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1994, pp. 362–367. [Online].
Available: http://dl.acm.org/citation.cfm?id=199288.178024

SEERTS 2018: Workshop on Software Engineering for Applied Embedded RealTime Systems @ SE18, Ulm, Germany 95


