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Abstract. Much has been promised about quantum computing accelerators, but 
few actual commercial technologies have been made available so far. The D-
Wave Computers Series constitutes one family of adiabatic quantum computers, 
based on energy minimization techniques that are considered suitable for solv-
ing discrete optimization problems. This work shows a path to explore these 
machines in order to perform neuro-symbolic reasoning, by specifying it a a set 
of pseudo-Boolean constraints and associating their satisfiability to energy 
minimization. Also introduced is the platform Q-SATyrus, a spin-off of the 
original project SATyrus. Q-SATyrus is under development in order to system-
atically address such mappings. 
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1 Q-SATyrus : Considering Adiabatic Quantum Computing for 
Neuro-symbolic Reasoning 

Based on the adiabatic theorem, adiabatic quantum computing performs some calcula-
tions that some consider being a kind of quantum computing [1]. The Canadian com-
pany D-Wave Systems, founded in 1999, has developed a family of adiabatic com-
puters, the newest one, the D-Wave 2000Q™ system, with 2000 qbits [2][3][4]. 

In D-WAVE systems, there are binary variables, named qubits qi in{0, 1}. Each 
qubit may have an associated weight ai (same as the threshold of Artificial Neural 
Networks [5]) and a pair of qubits  qi and qj have their mutual influence named cou-
pler (same as the binary weight of Artificial Neural Networks [5]) and represented by 
bij [6]. The general specification for the problem solved by a D-WAVE system is 
given by equation (1), which represents the objective function to be minimized. Is is 
also worth noting that the same equation (1) represents an artificial neural network 
with symmetric binary connections [5]. 

min O(a, b, q) = ∑ ai qj + ∑ bij qj qj (1) 

By converting propositional satisfiability into energy minimization [7], some works 
specified limited depth proofs, among them it is possible to cite [8], [9], [10] and [11]. 
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Works [9], [10] and [11] led to the construction of the SATyrus platform other more 
traditional optimization problems as well as some of their combinations were also 
mapped to SATyrus [12], [13], [14], [15], [16]. It should be pointed out that the map-
pings issued by SATyrus do not generate only binary connections energy equations. 
However, it is possible to convert higher-order connections into a set of binary ones 
together with additional units [17]. Q-SATyrus will provide the necessary intermedi-
ate conversion of energy minimization with higher-order connections to the one with 
corresponding global minima with binary connections. Also, although the works on 
binders [18], [19] and [20] were implemented in conventional computing, it is possi-
ble to map their solution to adiabatic computing. 
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