
Classifying Ontologies

Fábio Kepler, Christian Paz-Trillo, Joselyto Riani, Márcio M. Ribeiro, Karina
Valdivia-Delgado, Leliane Nunes de Barros and Renata Wassermann

Institute of Mathematics and Statistics, University of São Paulo
{kepler,cpaz,joselyto,marciomr,kvd,leliane,renata}@ime.usp.br

Abstract. During the development of an ontology it may be impor-
tant to know which is the logic underlying that particular ontology, so
that the developer knows what the expected complexity of reasoning
over it will be. In this paper, we first present an ontology that describes
several description logics and then two different classifiers that were im-
plemented using our ontology. The tools classify the ontology according
to the minimal description logic that covers all constructors used.

1 Introduction

Recently, there has been much interest in modeling domains by means of on-
tologies described in formal languages. These ontologies can be used by different
applications and are used to share and store knowledge. With the popularization
of the Semantic Web [BLHL01], a lot of effort was put into defining languages
for representing ontologies. Since 2004, OWL [MvH04] is a recommendation of
the World Wide Web Consortium (W3C). OWL is based on description logics
[HPS04], and there is now a growing interest in developing tools for the semantic
web which make use of the logical power of the language.

In this paper, we present a case study in the area of ontologies and applica-
tions. We have constructed an ontology about the domain of description logics.
We describe several logics and the relation among them. Then we have built two
tools that use our ontology in order to classify other ontologies in terms of their
expressivity and underlying logics. One of the tools is a plugin for Protégé1 and
the other is a Library using Jena2, which can be used independently of the user
interface.

The description logics ontology (DL-ontology henceforth) was built initially
to help us to find our ways through the literature. There are many different logics
and acronyms and their expressivity and complexity varies widely, from the most
simple logic FL0 [LB87], for which inference is polynomial to very expressive
logics such as SHOIN (D), which is one of the logics behind OWL [HPS04].
When building an ontology, it is useful to know which is the underlying logic, so
that the developer knows the expected computational complexity of reasoning
with his ontology. In several cases, it is possible to reformulate parts of the

1 A graphical ontology editor – http://protege.stanford.edu/.
2 A Java API for Semantic Web applications – http://jena.sourceforge.net



ontology and decrease the complexity by using a less expressive logic. Our tools
are intended to help the develop-per in this task.

The paper proceeds as follows: in the next section, we briefly introduce a fam-
ily of description logics and their relation to the Web Ontology Language OWL.
In Section 3, we describe the DL-ontology as well as the process of constructing
it. In Section 4, we describe the two tools that were implemented to classify on-
tologies using the DL-ontology. We finish the paper with some conclusions and
issues for future work.

2 Description Logics and Ontologies

2.1 Description Logics – DL

Description Logics (DLs)
Symbol Name

⊔ U Union
⊓ AL Intersection
¬ C Concept negation (complement)

A Atomic negation
∀ AL Value restriction
∃ E Existential quantification

≥,≤, = Q Qualified number restriction
F Functional number restriction
N Unqualified number restriction

I O Nominals (instance enumeration)
I Inverse roles
H Role hierarchies
D Data type restriction

Table 1. Main constructors.

are a family of knowledge rep-
resentation languages which
can be used to represent the
terminological knowledge of
an application domain in a
structured and formally well-
understood way [BCM+03].

In a DL, a distinction is
drawn between the so-called
“TBox” (Terminological Box)
and the “ABox” (Assertional
Box). Basically, the TBox con-
tains sentences describing con-
cept hierarchies (i.e., relations
between concepts) while the
ABox contains instance sen-
tences stating where in the hierarchy individuals belong (i.e., relations between
individuals and concepts). Concepts denote sets of individuals, and roles denote
binary relations between individuals.

A DL system also offers services that reason about the stored terminolo-
gies and assertions. Typical reasoning tasks for a terminology are to determine
whether a description is satisfiable (non-contradictory), or whether one descrip-
tion is more general than another. Important problems for assertions are to find
out whether they are consistent, i.e., whether they have a model, and whether
they entail that a particular individual is an instance of a given concept descrip-
tion.

Atomic concepts and atomic roles are elementary descriptions. Complex de-
scriptions can be built from them inductively with constructors.

A DL can be characterized by the constructors it provides. For example, the
logic ALC [LB87] is the DL that can have the constructors ⊔,⊓,¬, ∀, and ∃.
Table 1 shows the principal constructors.



The DL AL (Attributive Language) is a minimal DL of practical interest.
Other DLs of this family are extensions of AL . The sub-language of AL ob-
tained by disallowing atomic negation is called FL− and the sub-language of
FL− obtained by disallowing limited existential quantification is called FL0 .

More expressive DLs can be obtained by extending less expressive ones. For
example, the DL ALCQ extends AL with the constructors negation (C) and
qualified number restrictions (Q). ALCH denotes the extension of ALC by role
hierarchies.

In order to avoid very long names for expressive DLs the abbreviation S was
introduced for ALCR+ , i.e., the DL that extends ALC by transitive roles. Some
members of the S-family are SIN , SHIF , and SHOIQ. To prevent ambiguity,
we mixed both notations in this work. Instead of using ALCHIQ or SHIQ, we
use ALC-SHIQ .
2.2 Web Ontology Language – OWL

OWL is an acronym for Web Ontology Language, a markup language for pub-
lishing and sharing data using ontologies on the Internet [MvH04]. OWL is a
vocabulary extension of the Resource Description Framework (RDF)3 and is
derived from the DAML+OIL4 web ontology language.

OWL provides three increasingly expressive sub-languages designed for use
by specific communities of implementers and users.

– OWL Lite supports those users primarily needing a classification hierarchy
and simple constraints.

– OWL DL supports those users who want the maximum expressiveness while
retaining computational completeness (all conclusions are guaranteed to be
computed) and decidability (all computations will finish in finite time).

– OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees.

Each of these sub-languages is an extension of its simpler predecessor, both
in what can be legally expressed and in what can be validly concluded.

OWL DL is based on the description logic ALC-SHOIN -D and its subset
OWL Lite is based on the less expressive logic ALC-SHIF-D [HPS04].

3 The DL-ontology

3.1 Ontology development methodology

To develop an ontology from scratch is a difficult task. Even though there
are new technologies to support this process, like advanced ontology editors
[MFG+03], this activity is still considered an art.A brief overview of ontology
development methodologies can be found in [MIS95]. The methodologies listed

3 http://www.w3.org/RDF/
4 http://www.w3.org/TR/daml+oil-reference/



in this overview are considered to be the second-generation of ontology engineer-
ing methodologies.

The basic problem with the second-generation methodologies is that most
of them are mainly concerned with providing guidelines for the whole building
process (very similar with the purposes of software engineering methodologies).
However, guidelines such as those for class and individual identifications, called
the bottom-layer model of an ontology [MIS95], are neglected. The main pur-
poses of the third-generation methodologies are collaboration and argumentation
in the construction of the ontology, which can give support to the construction of
the bottom-layer model. Examples of the third-generation ontology engineering
methodologies are DILIGENT [PTS04] and HCOME [KV05].

Although we did not use a supporting tool such as HCOME to develop the
DL-ontology, we did in fact developed it in a collaborative way between the
project participants (the Description Logics ”domain experts”). We have also
used few steps recommended by some of the early methodologies [LGPSS99]
[GF95], as described bellow:

– make motivation scenarios to formulate competency questions to

be answered by the built ontology. Our first motivation scenario was
to have a compilation of the expertise knowledge on description logics and
its connection with the Semantic Web area. A second motivation was to
construct a description logic classifier, so an ontology designer could have
answers about an ontology o such as: What is the logic underlying the on-
tology o? Can a reasoner X be used on o? How can the ontology o be
reformulated so the reasoner X can be used? Can the ontology o be used to
answer questions of type α (i.e., involving a set of given constructors)?

– concepts collection and concepts definitions. Although the concepts
and definitions were taken from several technical documents, such as [BCM+03],
the ontology construction was not a trivial task. In order for the DL-ontology
to characterize answers to the competency questions, it was necessary to go
through several discussions and decisions, as we describe in the rest of this
section in detail. For instance, the decision of characterizing a particular
logic as a class instead of an individual allowed us to define axioms for each
logic related to the set of constructors it supports.

3.2 Ontology Concepts

The proposed ontology, called DL-ontology, is intended to represent description
logics and its expressiveness. More specifically, we focus on classification of logics
based on the logical constructors it uses. We also introduce concepts for detecting
reasoners that would support such description logics. The main concepts used
in the ontology are:

– Axiom: represents the axioms that a description logic can support. An
axiom can be a Concept axiom or a Role axiom. Each allowed axiom is
declared as an instance of Concept or Role axiom. In the DL-ontology we



have asserted two concept axioms: definition and inclusion; and two role
axioms: role hierarchy and transitivity.

– Logical Constructor: is a concept in the DL-ontology that includes all the
concept and role constructors allowed in description logics. We can list for
example: negation, concept intersection and concept union.

– Complexity: represents any complexity class that is interesting for the de-
scription logics domain. The complexity classes are declared as instances of
this class.

– Reasoner: reasoners that are associated to the description logics that they
support, i.e., that can be used to make inferences about them.

– Description Logic: a higher level class so that any description logic is
declared as a concept subsumed by this concept. We will use ALC to describe
how a logic is represented:
• Constructors and Axioms: represents lists of constructors and axioms

that a description logic supports. For instance, the logic ALC supports:
Atomic Negation, Value Restriction, Full Existential Qualification, Con-

cept Union, Intersection and Complement.
• Complexity Class: characterizes the complexity class for each descrip-

tion logic. The complexity class for ALC is PSpaceComplete.
• Reasoners: lists the reasoners that can be used with the description

logic. Examples of reasoners for ALC are: Pellet 5, Racer 6 and Fact++
7.

In this work, we have characterized the family of ALC Logics. However any
other description logic can be characterized, just by listing their constructors
and axioms and associating its complexity and the reasoners that support it.

3.3 Modeling the Ontology

In this section we intend to show the choices we have made when modeling
an ontology about description logics. Before starting to write the ontology one
should decide for what purpose it will be used. In our case we needed an ontology
which could satisfy three purposes:

– to define description logics;
– to infer which of the well know description logics best characterizes a certain

ontology with a certain set of constructors; and
– to allow extensions (e.g. if we want to introduce new logics).

Our first idea was to describe a logic as an individual (an element of the
ABox), however, by doing this it was not possible to infer if some logic is sub-
sumed by another. We have then changed to define a logic as a class.

The properties that distinguish one description logic from another are the
constructors and the axioms they support. Hence in the ontology we have defined

5 http://www.mindswap.org/2003/pellet/
6 http://www.racer-systems.com/
7 http://owl.man.ac.uk/factplusplus/



a certain description logic as “the description logic which can not have other
constructors besides the listed ones”. For example, the logic ALC in the DL-
ontology is described by:

ALC ≡ DL ⊓ ∀ supports constructor({⊔,⊓,¬, ∀, ∃}) . (1)

which is consistent with our definition of what distinguishes each description
logic. Moreover this description has the advantage that an hierarchy of descrip-
tion logics can be inferred. This hierarchy shows that some description logics
are subsumed by others and inherit their properties such as being supported by
some reasoner.

Furthermore we have decided to split the constructors into classes in order
to make the ontology easier to read and manipulate. We also have chosen to
join the constructors, which normally appear together, in the same class. For
example: we have defined a class “Qualified Number Restriction” as the union
of the class “Number Restriction” with all the constructors that characterize the
qualified number restriction (Definition 2).

Qualified Number Restriction≡ Number Restriction

⊔ {atleast N Q, atmost N Q} .
(2)

Hence, it is possible to define the logic ALCQ as:

ALCQ ≡ DL ⊓ ∀ supports constructor({⊔,⊓,¬, ∀, ∃}

⊔ Qualified Number Restriction) .
(3)

From the definitions 3 and 1 one can infer that the logic ALCQ subsumes the
logic ALC . Some useful information can be inferred from the hierarchy of de-
scription logics. For example, the reasoner RACER can be used to reason about
the description logic SHIQ, and since the description logic ALC is subsumed
(in our ontology) by the description logic SHIQ this implies that ALC inherits
the property “being supported by RACER”. The same mechanism can be used
to represent complexity classes. For example the logic SHON has the property
of being ExpTime so the logic ALC which is subsumed by SHON inherits this
property, but ALC has also the property of being PSpace.

3.4 The Ontology Complexity

The DL-ontology can be represented in the description logic SOIF -D, a sub-
logic of SHOIN -D, since we have used the concept constructors union, nomi-
nals, value restriction and existential quantification, the transitive and inverse
role axioms as well as data type restrictions.

Although we did not face any major performance issue when doing tests
with our ontology, its logic happens to be very expressive and, consequently,
complex to reason with in the general case [Lut04]. We conjecture that it is



possible to devise an alternative ontology much less complex that still fulfills our
requirements. As a matter of fact, in this study case we have not spent much
attention to performance issues related to reasoning tasks with our ontology.
This is mainly because we were most concerned with the expressive perspective
(how to express things in the ontology) than the practical one (how fast would
be the reasoning with it).

One can try to reduce an ontology complexity by removing some of the
constructors used. Although this is not always possible, in some cases it can
be done with minor changes in the ontology meaning without compromising its
usability. For instance, the DL-ontology includes nominals, which is a well known
‘killer’ for current DL reasoners [HMW05]. We plan to investigate if it is possible
to avoid such constructors in our ontology. In the following, we will sketch a
preliminary idea of how to do that by modifying the DL-ontology (described in
section 3.3) that can also be applied to any other ontology.

In order to eliminate the use of nominals, we will make some changes to the
DL-ontology yielding a new ontology which we will call the adapted DL-ontology.
The basic technique is to create a primitive concept for each possible logical con-
structor. Each of these primitive concepts will be called a single constructor con-

cept. Note that, in our intended interpretation, each single constructor concept
is a singleton whose instance represents a distinct constructor. We restrict the
constructors range for each logic family, with the supports constructor role,
using the union of the respective single constructor concepts instead of nominals.
For example, in the adapted ontology, the ALC logic family would be defined as

ALC ≡ DL ⊓ ∀ supports constructor(U, I, C, UQ, EQ) . (4)

where U , I, C, UQ, and EQ are single constructor concepts representing respec-
tively (in our intended interpretation) the logical constructors union, intersec-
tion, complement, universal quantification and existential quantification.

Some preliminary tests with the adapted DL-ontology have shown that it
does the same classifications as the DL-ontology. However, this must be care-
fully investigated because, although in our intended interpretation each construc-
tor primitive concept is a singleton, there exists other possible interpretations.
Therefore, the adapted DL-ontology is not logically equivalent to the original
DL-ontology. The reason for that is that in the DL-ontology each constructor
is an individual and in the adapted one they are primitive concepts. We could
try to reduce this ‘gap’ by making some assertions in the adapted ontology. For
instance, we could assert disjointness between each pair of single constructor
concepts. However, ultimately, it seems that the only way to express the indi-
viduality of each logical constructor is by the use of nominals since we cannot
restrict the cardinality of a concept in description logics. On the other hand, the
question that should be asked is if we really need to assert constructors individ-
uality in order to fulfill the requirements of our ontology. This is not a trivial
matter and we plan to address it in future work as well as what other construc-
tors can be removed from our ontology yielding a less complex one which still
fulfill our requirements.



4 Using the DL-ontology

We have implemented a plugin for Protégé and a Jena-Based Library for on-
tologies classification. They are both examples of applications that use the DL-
ontology to classify ontologies in general. They require a DIG8 Server and were
tested with Pellet, which implements DIG.

4.1 Protégé plugin for Ontology Classification

The Protégé plugin OntoClassDL uses the Protégé OWL API9, that is an
open-source Java library for Web ontology and RDFS languages. The classes
and methods provided by the API were used to implement the plugin that is
able to access the DL-ontology to classify any other ontology.

In order to understand how the Protégé plugin for ontology classification
works, we will use it to classify an ontology example, that has to be opened in
the Protégé editor.

The plugin implementation declares that an ontology class L is a subclass
of the DL Logic asserting the constructors and axioms it supports. Then, the
DIG reasoner is called and the minimal description logic L′ that includes all
L logic constructors is returned. The reasoners that can make inference with
that description logic are listed and the complexity class for that logic is also
shown (Figure 1 shows a screenshot). In the example, the DL-ontology is clas-
sified as ALC-SHIF-D , which is the description logic that includes all L logic
constructors.

Suppose that we want to convert the DL-ontology into a DL with less com-
plexity. The plugin finds in the inferred model a sub-logic L′′ that includes some
L logic constructors and shows the L′′ features that are not used. In our example,
the plugin finds one ALC-SHIF-D sub-logic, ALC-SHIF .

4.2 Jena-Based Library for Ontology Classification

We have also implemented a Jena-Based library for ontology classification that
can be included in other applications independent of any user interface. This
library was developed considering that the DL-ontology can be modified in order
to be improved and extended.

We implement a Java class for every concept implemented in the ontology
(See 3.2). The idea behind this library is that obtaining any property of an
ontology concept can be seen as a query in SPARQL10, so the main logic for
classifying is entirely expressed in RDF queries and stored in files avoiding to be
hard-coded inside the application.

8 Description Logic Interface - a specification for a simple API to DL reasoners
[BMC03].

9 http://protege.stanford.edu/plugins/owl/api/
10 SPARQL is a protocol and a query language for easy access to RDF graphs. It is

candidate for being a W3C Recommendation. http://www.w3.org/TR/rdf-sparql-
query



Fig. 1. OntoClassDL plugin

In the same way that in the plugin implementation, an ontology class L is
created and the DIG reasoner is called to classify the ontology. This will update
the model that Jena keeps about the DL-ontology by creating instances of the
ontology that is currently being classified. Queries in SPARQL were implemented
for extracting the information from the ontology. Examples of such queries are:
Which constructors does L support? What is the minimal logic that supports all

the constructors of L? Which constructors could be avoided to obtain a simpler

logic? What are the reasoners that can be used to reason over that logic?.

Figure 4.2 shows the query for the Which constructors does L support? ques-
tion. Note the use of jx prefix for bounding a RDF bag of values to a variable.
Also note the use of specific constructors inside the query, these SparQL queries
are very dependent on the constructors used to describe the DL-Ontology.

4.3 Examples

The plugin and the Jena-Based Library were tested with three different versions
of the Contemporary Art Ontology used in OnAIR11 [PTWB05] and with the
OWL-S [MPM+04] Service ontology 12.

11 A query-based video retrieval system (http://bibo.incubadora.fapesp.br/portal/OnAIR/).
12 The Service ontology provides a simple means of organizing the parts of a Web

service description (http://www.daml.org/services/owl-s/1.1/Service.owl)



PREFIX dl: <http://www.owl-ontologies.com/unnamed.owl#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX jx: <java:com.hp.hpl.jena.query.extension.library.>

SELECT DISTINCT ?res

WHERE {

dl:L owl:equivalentClass ?intCl .

?intCl owl:intersectionOf ?colIn .

EXT jx:list(?colIn, ?allVFRes) .

?allVFRes owl:allValuesFrom ?allVF .

?allVF owl:unionOf ?colUn .

EXT jx:list(?colUn, ?res)

}

Fig. 2. SparQL Query for the Which constructors does L support? question.

The results are shown in Table 2. There are three versions of the Contempo-
rary Art Ontology with varying syntactical characteristics in order to fall into
less complex OWL sub-languages. The Data Type Restriction (D) makes them
sub-logics of ALC-SHIF-D . There exists logics that can fit better to the exact
set of constructors used by these ontologies, but it is part of future work to
extend the DL-ontology to deal with them.

Ontology Constructors Logic Reasoners Complexity Sub
Logic

Non Sub
Logic
features
used

art − full D F U ALC-
SHIF-D

None ExpTime
NExpTime

ALC-
SHIF

D

art − dl D F U ALC-
SHIF-D

None ExpTime
NExpTime

ALC-
SHIF

D

art − lite D ALC-
SHIF-D

None ExpTime
NExpTime

ALC-
SHIF

D

OWL − S service I N ALC-
SHIN

FaCT
FaCT++
Pellet
Racer

ExpTime
NExpTime

ALC-
SHIF

N

Table 2. Results with the Contemporary art ontology and the OWL − S service

ontology

Notice that the description logic ontology, that is centered in constructors,
was not developed to infer if an ontology is OWL-Full or OWL-DL. This is



because what distinguishes an ontology as being OWL-Full or OWL-DL is not
only the constructors it can support but, for example, the fact that Classes,
Properties and Individuals are disjoint sets, avoiding a class to be an individual at
the same time. This difference cannot be validated by identifying the constructors
used in the ontology.

The results with the Protégé plugin are the same as the ones found by the
Jena-Based Library, the only difference is that the last provides all the sub logics
L′′ and for each one the L′′ features not in use.

5 Conclusions and Future Work

In this paper we have presented an ontology for describing the domain of de-
scription logics, the DL-ontology, and two application tools that can classify an
ontology regarding its expressivity and complexity of reasoning based on the
DL-ontology.

This was a case study for the use of the technology that appeared recently
around the semantic web. The DL-ontology was developed in OWL, using Protégé.
One of the classifiers is a plugin for Protégé, the other one is a library based on
Jena. Both have to connect to a reasoner using DIG.

The idea of having an ontology classifier as proposed here can be viewed as
an important tool for novice ontology designers and therefore to be adopted as
a fundamental step of any ontology development methodology. Its main utility
is to guide a designer during the ontology modeling, to reformulate parts of the
ontology in order to decrease its complexity by using, whenever possible, a less
expressive logic.

Future work includes extending the tools to classify ontologies also regarding
the fragment of OWL which can express them and better studying constructions
to rewrite pieces of the ontology in order to reduce its complexity.

The ontology and the tools developed are available at
http://bibo.incubadora.fapesp.br/portal/OntologiesClassification/.

Acknowledgements: We would like to thank André Casado Castaño, Andréia
Machion and George Henrique Silva for helping with the development of the
tools. This research was sponsored by the Brazilian Research Council (CNPq)
through grant 550222/03-0.

References

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. MIT
Press, Cambridge, MA, USA, 2004.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook. Cambridge
University Press, 2003.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, May 2001.



[BMC03] S. Bechhofer, R. Moller, and P. Crowther. The DIG Description Logic
Interface. In Proc. of the International Workshop on Description Logics,
2003.

[GF95] M. Grüninger and M. Fox. Methodology for the design and evaluation of on-
tologies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge
Sharing, 1995.

[HMW05] Volker Haarslev, Ralf Möller, and Michael Wessel. Description logic infer-
ence technology: Lessions learned in the trenches. In Description Logics,
2005.

[HPS04] Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Journal of Web Semantics, 1(4):345–357,
2004.

[KV05] K. Kotis and G. Vouros. Human-Centered Ontology Engineering: the
HCOME Methodology. International Journal of Knowledge and Informa-
tion Systems (KAIS), 2005.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractabil-
ity in knowledge representation and reasoning. Computational Intelligence,
3:78–93, 1987.

[LGPSS99] Mariano Fernandez Lopez, Asunción Gomez-Perez, Juan Pazos Sierra, and
Alejandro Pazos Sierra. Building a chemical ontology using methontology
and the ontology design environment. IEEE Intelligent Systems, 14(1):37–
46, 1999.

[Lut04] Carsten Lutz. An improved NExpTime-hardness result for the descrip-
tion logic ALC extended with inverse roles, nominals, and count-
ing. Technical Report LTCS-04-07, Inst. for Theoretical Computer
Science, Dresden University of Technology, 2004. http://lat.inf.tu-
dresden.de/research/reports.html.

[MFG+03] M. A. Muzen, R. W. Fergerson, W. E. Grosso, M. Crubezy, H. Heriksson,
N. F. Noy, and S. W. Tu. Protégé: An environment for knowledge based sys-
tems development. International Journal of Human-Computer Interaction,
58(1):89–123, 2003.

[MIS95] R. Mizoguchi, M. Ikeda, and K. Seta. Ontology for modeling the world from
problem solving perspectives. In IJCAI’95, Workshop on Basic Ontological
Issues in Knowledge Sharing, 1995.

[MPM+04] David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H. Burstein,
Drew V. McDermott, Deborah L. McGuinness, Bijan Parsia, Terry R.
Payne, Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia P.
Sycara. Bringing semantics to web services: The OWL-S approach. In
Semantic Web Services and Web Process Composition, First International
Workshop, (SWSWPC), volume 3387 of LNCS, pages 26–42. Springer, 2004.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language overview. W3c recommendation, World Wide Web Consortium,
February 2004.

[PTS04] H. Pinto, C. Tempich, and Y. Sure. Diligent: Towards a fine-grained
methodology for distributed, 2004.

[PTWB05] Christian Paz-Trillo, Renata Wassermann, and Paula P. Braga. An in-
formation retrieval application using ontologies. Journal of the Brazilian
Computer Society, 11(2):17–31, 2005.


