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Abstract. Satisfiability-modulo-theories (SMT) solving is a technique
to check the satisfiability of logical formulas. In the context of SMT solv-
ing for non-linear real arithmetic, the cylindrical algebraic decomposition
(CAD) can be embedded as a theory solver to solve sets (conjunctions)
of polynomial constraints. When developing such a CAD theory solver,
a design choice is given by the selection of the projection operator used
in the CAD method. In this paper we provide some experimental eval-
uations to analyse how the choice of the projection operator affects the
computational efficiency of SMT solving.

1 Introduction

Satisfiability-modulo-theories (SMT ) solving [2, 11] aims at the fully automated
check of the satisfiability of (usually quantifier-free) first-order logic formulas.
Most SMT solvers implement algorithms which divide this task into two parts:
a combinatorial part (responsible for the satisfaction of the Boolean structure of
a formula) and a theory-solving part (to check the satisfiability of conjunctions
of theory constraints).

When solving quantifier-free non-linear real arithmetic (QF NRA) formulas,
the theory-solving part requires the invocation of a decision procedure to check
the satisfiability of conjunctions of polynomial equalities and inequalitites over
the real domain. Besides some incomplete algorithms like interval constraint
propagation [7, 8] or the virtual substitution method [20], the cylindrical alge-
braic decomposition (CAD) method [5] can be expoited for this purpose.

To check the satisfiability of a conjunction of polynomial constraints (which
we call in the following the input formula), the CAD method works in two phases.
In its first phase it uses a projection operator to generate sets of polynomials
of decreasing dimensionality; the sets of real roots of these polynomials are the
borders of a finite number of semi-algebraic sets (cells), such that in each cell
either all points satisfy the input formula or none of them does so. In its second
phase the CAD method identifies a sample point from each of the cells and
checks whether the input formula is satisfied by one of those sample points.

In the first phase of the CAD method, different projection operators can be
used. Some of them are incomplete, some are complete. In both cases, if one



of the sample points satisfies the input formula then a solution is found. When
using a complete projection operator, if none of the sample points satisfies the
input formula then the input formula is unsatisfiable. However, if none of the
sample points satisfy the input formula, incomplete projection operators might
lead to inconclusive results.

Besides completeness, different projection operators differ also in the required
computation effort (both for computing the projection and generating the sample
points). Naturally, one expects that a complete projection operator needs more
computational effort than an incomplete one. The natural question of how large
these differences are has been looked at, for example in [13], but a conclusive
answer has not yet been found. Hence, it is not a priori known how large these
differences are, and how different incomplete projection operators relate in this
respect.

The aim of this work is to analyse these aspects via experimental evaluation
in the SMT solving context, i.e., when the CAD method gets as input only
conjunctions of polynomial constraints.

2 Preliminaries

2.1 SMT Solving

SAT-modulo-theories (SMT ) solvers [2, 11] aim at checking the satisfiability of
(usually quantifier-free) first-order-logic formulas over an underlying theory (or
combined theories [16]). Typically, lazy SMT solvers combine a SAT solver with
one or more theory solvers. Thereby the SAT solver handles the input formula’s
logical structure and is responsible for finding solutions for the Boolean skeleton
of the input formula, which is gained by substituting fresh Boolean propositions
for the theory atoms. To be able to check the consistency of theory atoms, the
SAT solver communicates with the theory solvers, which implement decision
procedures for the underlying theory.
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SAT solver
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solver(s)
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Fig. 1: The SMT solving framework

Figure 1 illustrates the lazy SMT
solving framework. The SAT solver it-
eratively searches for a satisfying so-
lutions for the Boolean skeleton. Dur-
ing its search, it consults the the-
ory solver(s) to check whether the
current Boolean assignment is consis-
tent in the theory. To do so, it col-
lects all theory constraints whose ab-
straction proposition is true and ap-
pears non-negated in the formula, and
those whose abstraction proposition is
false and appears negated in the for-
mula. The resulting theory constraint
set is sent to the theory solver(s), which checks whether it is consistent. In the full



lazy approach, this communication takes place only for full Boolean solutions,
whereas in the less lazy approach the theory checks are invoked more frequently
also for partial solutions.

If the constraints are consistent in the theory and the SAT solver’s assignment
is already complete then a satisfying solution is found for the input formula. If
the constraints are consistent but the Boolean assignment is not yet complete,
the SAT solver continues its search. Otherwise, if the theory constraints are
conflicting, the invoked theory solver returns an explanation for the conflict. The
explanation is often an infeasible subset {c1, . . . , cn} ⊆ C of the theory solver’s
input constraints C, which leads to a tautology (¬c1∨. . .¬cn), whose abstraction
can be added to the SAT solver’s clause set to exclude this combination of
(conflicting) theory constraints from the further search.

First SMT solvers addressed more light-weight theories like equality logic and
uninterpreted functions. Aiming at program verification, theories for arrays, bit-
vectors and floating-point arithmetic followed. Nowadays there are also highly
tuned SMT solvers for linear arithmetic theories. Recent developments allow also
to solve quantifier-free non-linear arithmetic (QF NRA) problems with SMT
solvers [10, 6].

2.2 Non-linear Real Arithmetic

Given a finite set V = {x1, . . . , xn} of variables and a coefficient ring R, a poly-

nomial p ∈ R[x1, . . . , xn] is an expression of the form p =
∑d

i=1 aiΠ
n
j=1x

eij
j

with ai ∈ R and ei,j ∈ N0 for all i = 1, . . . , d and j = 1, . . . , n. The expres-
sions aiΠ

n
j=1x

eij
j are called terms, in which Πn

j=1x
eij
j is a monomial and ai its

coefficient. If n = 1 then we call p univariate, otherwise multivariate.
Note that a multivariate polynomial p ∈ R[x1, . . . , xn] in variables x1, . . . , xn

and coefficients from R can also be viewed as a univariate polynomial p ∈
R[x1, . . . , xn−1][xn] in the main variable xn having polynomial coefficients from
the polynomial ring R[x1, . . . , xn−1].

We use the following properties of a polynomial p with the usual meaning:
the degree deg(p) and total degree tdeg(p), as well as the leading term ldt(p) and
the leading coefficient lcf(p). The reductum red(p) of a non-zero polynomial p
is p − ldt(p); for p = 0 we define red(0) = 0. The kth reductum of p is defined
recursively by red0(p) = p, redj(p) = red(redj−1(p)).

QF NRA formulas are Boolean combinations of polynomial constraints p ∼ 0,
where p is a polynomial and ∼∈ {<,≤,=, 6=,≥, >} is a comparison operator.
The QF NRA satisfiability problem poses the question whether we can assign a
real value to each of the variables in a QF NRA formula such that the formula
evaluates to true (under the standard semantics of arithmetic operators). The
satisfiability problem for QF NRA is decidable [19], but it has an exponential
time-complexity even for conjunctions of polynomial (in)equalities (in contrast
to its linear fragment, in which conjunctions of inequalities are solvable in poly-
nomial time). In this work we will use the cylindrical algebraic decomposition
(CAD) method [5] as a QF NRA theory solver module in the SMT solving con-
text.



2.3 Cylindrical Algebraic Decomposition

The sign of a polynomial p ∈ Z[x1, . . . , xn] under some r ∈ Rn is either −1 if
r evaluates p to a negative value, 1 if the evaluation results in a positive value,
and 0 otherwise. We say that p is sign-invariant over a set R ⊆ Rn if the sign of
p is the same under all points in R. A set Pn ⊆ Z[x1, . . . , xn] of polynomials is
said to be sign-invariant over R ⊆ Rn if each polynomial in Pn is sign-invarint
over R; the set R is then called a Pn-sign-invariant set.

A partition C = {C1, . . . , Ck} of Rn (with Ci ⊆ Rn, Ci ∩Cj = ∅ for all i 6= j,
and ∪iCi = Rn) is called a cylindrical algebraic decomposition (CAD) of Rn if
each Ci ∈ C is a connected semi-algebraic1 set, and for each Ci, Cj ∈ C and
each 1 ≤ k < n the projections of Ci and Cj to Rn−k (by removing the last k
coordinates) are either disjoint or identical. We call the sets Ci the cells of the
CAD. Intuitively, the last condition assures that the cells of the decomposition
are cylindrically ordered, i.e., that the projections of the cells Ci to Rn define a
CAD of Rn−1.

The cylindrical algebraic decomposition method takes as input a set Pn ⊆
Z[x1, . . . , xn] of polynomials and sign conditions2 for them3, and computes a
CAD for Rn such that the CAD cells are all Pn-sign-invariant. That means, it
suffices to take a representative sample point from each cell and test whether it
satisfies the sign conditions for the input polynomials.

The CAD method works in two phases: the projection phase and the con-
struction phase. In the projection phase, a projection operator is used to compute
the polynomials that describe the boundaries of the CAD cells. Starting with
the input polynomials Pn ⊆ Z[x1, . . . , xn], the projection operator is applied to
Pn to compute a set Pn−1 ⊆ Z[x1, . . . , xn−1] of polynomials, for which a CAD is
computed recursively. The projection operator has the important property that
each CAD C′ for Pn−1 can be extended to a CAD C for Pn by defining the cells
of C to be the Pn-sign-invariant regions in the cylinders C ′i × R for each cell
C ′i ∈ C′.

2.4 Projection operators

Assume two multivariate polynomials p, q ∈ Z[x1, . . . , xn], which can also be

seen as univariate polynomials p =
∑k

i=0 aix
i
n and q =

∑l
i=0 bix

i
n in xn with

polynomial coefficients ai, bi ∈ Z[x1, . . . , xn−1]. Assume furthermore that k, l ≥ 1
with ak 6= 0 and bl 6= 0, i.e., deg(p) = k ≥ 1 and deg(q) = l ≥ 1 are the degrees
of the polynomials in xn. The Sylvester matrix of p and q (with respect to xn)

1 A set R ⊆ Rn is semi-algebraic if it can be described by a conjunction of polynomial
constraints.

2 A sign condition for a polynomial p is a polynomial constraint p ∼ 0.
3 In general it could be a real arithmetic formula, but in the SMT context we focus of

polynomial constraint sets.



is the following (k + l)× (k + l)-matrix.

Sylxn(p, q) :=



ak · · · a0
ak · · · a0

. . .
. . .

ak . . . a0
bl · · · b0
bl · · · b0

. . .
. . .

bl . . . b0



 l

 k

For some 0 ≤ i ≤ j ≤ k+l letMi,j be the the matrix obtained from Sylxn(p, q)
by deleting the last j rows of p coefficients, the last j rows of q coefficients and
the last 2j + 1 columns except the column m+ n− i− j.

– The j-th subresultant of p and q is defined as Sj(p, q) =
∑j

i=0 det(Mj,i)x
i
n.

– The j-th principal subresultant coefficient of p and q is pcsj(p, q) = det(Mj,j)
(i.e., the leading coefficient of Sj(p, q)).

– The resultant of p and q is defined as res(p, q) = det(Sylx(p, q)) = psc0(p, q).
– The pcs set of p and q is defined as

PSC(p, q) = {pcsj(p, q) | 0 ≤ j ≤ min(k, l), pcsj(p, q) 6= 0}.

– The reducta set of p is defined as

RED(p) = {redi(p) | 0 ≤ i ≤ k, redi(p) 6= 0}.

Assume in the following a set Pn = {p1, . . . , pm} ⊆ Z[x1, . . . , xn−1][xn] of
polynomials, which we view as polynomials in xn with polynomial coefficients
from Z[x1, . . . , xn−1]. Let furthermore d be an upper bound on the degrees of
the polynomials pi in the main variable xn. A projection operator takes Pn as
input and generates a set Pn−1 ⊆ Z[x1, . . . , xn−1] of polynomials as output.

Next we describe the projection operators whose efficiency we will compare
in Section 3. Due to space limitations, we refer for more detailed explanations
to the references given below.

Collins’ projection operator [5]

projC(Pn) = projC1(Pn) ∪ projC2(Pn)

projC1(Pn) =
⋃

pi∈Pn

⋃
r∈RED(pi)

({ldcf(r)} ∪ PSC(r, r′))

projC2(Pn) =
⋃

1≤i<j≤m

⋃
r1∈RED(pi)
r2∈RED(pj)

PSC(r1, r2)



Using Collins’ operator in the CAD method, a Pn-sign-invariant CAD of Rn can
be established. The number of polynomials in projC(Pn) is dominated by m2d3.
Note that Collins’ operator has been replaced by Hong’s operator below without
any drawback. As the first projection operator, we include it nevertheless in this
comparison to give an impression on the progress made.

Hong’s projection operator [9] Hong showed that within ProjC2, the added psc
sets have redundancies and proposed the following operator:

projH(Pn) = projC1(Pn) ∪ projH2(Pn)

projH2(Pn) =
⋃

1≤i<j≤m

⋃
r∈RED(pi)

PSC(r, pj)

The number of polynomials included in projH(Pn) is dominated by m2d2, which
implies a possible significant impact on the overall performance compared to
Collins’ operator, since the degree bound impacts the size in quadratic instead
of cubic order.

McCallum’s projection operator [14] Let P ′n = {p′1, . . . , p′m} be the finest square-
free basis of Pn.

projM(Pn) = projM1(P ′n) ∪ projM2(P ′n) ∪
⋃

pi∈Pn

{contxτ (pi)}

projM1(P ′n) =
⋃

pi∈P ′
n

{discr(pi)} ∪ ⋃
r∈RED(pi)

{ldcf(r)}


projM2(P ′n) =

⋃
1≤i<j≤m

{res(pi, pj)}

Although it seems substantially different to the previous operators, McCal-
lum showed that one could also redefine Collins’ operator to operate with sub-
discriminants rather than subresultants such that projM ⊆ projC (see Chapter
3.1 in [14]). McCallum’s operator not only requires the use of finest square-free
basis in each step, but it can only guarantee the correctness of a CAD procedure
with his operator when the input polynomials are well-oriented. In addition to
this restriction, the finite amount of real roots of the well oriented polynomials in
the set projM(A) requires a slight modification of the lifting phase to preserve
the order-invariance in every step. McCallum also provided incomplete methods
to check whether a polynomial has finitely many zeros or not. It is also possible
to detect if the input polynomials were not well-oriented during lifting phase,
if one keeps track while creating sample points whether they present a space
of positive dimension or not. If a sample point p ∈ Ri that represents a cell of
positive dimension – thus was chosen to represent a sector in some lower dimen-
sional lifting step – causes a (i+1)-variate projection polynomial to vanish, then
this polynomial has an infinite number of zeros: all sample points that could



have been chosen instead of the one that lead to p in this lower dimensional
lifting step. McCallum further argued that the vast majority of polynomials are
well-oriented including all polynomials with at most three variables.

Brown’s projection operator While McCallum’s operator produces order-invariant
CADs which might be needed in some scenarios, it is not required to solve
QF NRA formulas, because only the sign-invariance is mandatory there. Brown
showed that it is sufficient for the projM1 operator to only contain the leading
coefficient of each polynomial instead of all coefficients. This however needs to
come along with further modifications in the lifting stage.

Let again P ′n = {p′1, . . . , p′m} be the finest square-free basis of Pn.

projB(Pn) = projB1(P ′n) ∪ projM2(P ′n) ∪
⋃

pi∈Pn

{cont(pi)}

projB1(P ′n) =
⋃

pi∈Pn

{discr(pi)} ∪ {ldcf(pi)}

Brown also made another modification to the lifting stage, that allows the
CAD to stay correct in some cases, where the polynomials are not well-oriented.
Note that essentially projB ⊆ projM ⊆ projH ⊆ projC.

Further projection operators There exist a number of further projection opera-
tors that we do not consider in this paper. Lazard [12] improved on McCallum’s
operator, however the proof contained an error that was only recently fixed by
[15]. Seidl and Sturm [17] proposed an specialized version of Hong’s operator for
what they call a partial CAD targeting inputs with many parameters. Motivated
by applications in SMT solving there are also results on how to compute pro-
jections only locally for specific cells, for example by Strzeboński [18] or Brown
and Košta [4].

3 Experimental results

We implemented the four projection operators presented in the previous sec-
tion in the SMT solver SMT-RAT [6]. The test setting was based on SMT-RAT’s
CAD theory module, which uses some optimizations, including the following.
Constants get removed instantly and are not projected down. The same holds
for positive definite and negative definite functions, as they are always sign- and
order-invariant. It does however not provide the calculation of a square-free basis
yet – and thus this restriction of McCallum’s and Brown’s operator is ignored
– and also does not attempt to fix the projection if a polynomial vanishes dur-
ing lifting. Both are under active development and some preliminary results are
presented at the end.

While SMT-RAT can be run in an incremental fashion and thus can deal with
backtracking scenarios by offering ways of adding and removing polynomials on
each projection level, this feature was not utilized here as the study of interest



Operator Collins Hong McCallum Brown

Completed projections 5698 6052 6828 6828

Table 1: Number of completed projections

average median 75% qt max

Number of polynomials ≈ 6,37 6 8 34

Max degree ≈ 5,23 3 6 44

Max total degree ≈ 6,06 4 7 44

Table 2: Benchmark structure (qt=quartile), 5698 instances

is the efficiency of the operators by the theoretical improvements, that were
made on the field of CAD. See section 3.2 for more details on how incremental
projection works in SMT-RAT. Note that we do not look at the question of variable
ordering here. It is well established that choosing a proper variable ordering can
have a huge impact on the projection. A comparison of projection operators
using a variable ordering tuned to the specific projection operator would be very
interesting, but we have not done this yet. As for this paper, we use a static
variable ordering that is essentially the order in which the variables are declared
in the input formula.

We used non-linear benchmarks from the SMT competition 2014 and instan-
tiated SMT-RAT in four variants, using the four different projection operators in
its CAD theory solver.

3.1 CAD projection only

As a first experiment, the CAD modules were programmed to project all poly-
nomials of an SMT problem instance down to the univariate level and then stop.
The tests were run on an AMD Opteron 6172 with a time limit of 60 seconds.
Table 1 shows for how many benchmarks the projections could be completed
within the time limit, when using the different projection operators.

In a next step we identified those benchmarks for which the projection could
be completed within the time limit using all four operators. These benchmarks
are exactly those which Collins’ operator was able to handle. The performance of
the four participants on these benchmarks was observed more closely. As factors
having a major implact on performance, the number of different polynomials,
their maximum degree (in the respective main variable) and their maximum
total degree over all polynomials were identified. Note that other factors like the
number of terms or the coefficient size were not considered here. This information
is shown in Table 2, based on the average and the median, as well as the 75%
quartile, being the largest data point that is smaller than 25% of the data and
the maximum.

From the theoretical analysis, we expect to have a clear order on the pro-
jection operators as we established projB ⊆ projM ⊆ projH ⊆ projC. We



Number of polynomials average median 75% qt max

Collins ≈ 10,89 6 16 99

Hong ≈ 8,62 5 12 57

McCallum ≈ 6,06 4 8 31

Brown ≈ 5,29 4 7 25

Max degree average median 75% qt max

Collins ≈ 7,06 1 10 182

Hong ≈ 7,05 3 10 182

McCallum ≈ 6,05 2 8 182

Brown ≈ 6,04 2 8 182

Max total degree average median 75% qt max

Collins ≈ 7,76 4 10 182

Hong ≈ 7,75 4 10 182

McCallum ≈ 6,68 3 8 182

Brown ≈ 6,68 3 8 182

Table 3: Results on projection level 1 (5693 instances)

also know that using McCallum’s (and Brown’s) operator have the theoretical
drawback of incompleteness. Therefore we try to measure how significant the
individual gaps are and whether the incompleteness actually occurs in practice.
Unfortunately, only a small number of our benchmarks contain more than three
variables and only these could reveal this incompleteness.

These questions cover the performance of the different projection operators
in a single CAD computation, but it is not at all clear whether these results
immediately transfer to the SMT setting. Here, multiple incremental calls are
performed and – if the problem turns out to be satisfiable – the computation
can be aborted if a single satisfying sample is found. How the different operators
perform within a full SMT solver is thus analyzed separately.

We tracked the number of polynomials, the maximum degree and the maxi-
mum total degree for the first 4 projection levels and got the results depicted in
the Tables 3, 4, 5 and 6. Only few solved instances caused projections with more
then 5 variables, which is why this restriction is made. Note that the numbers for
the maximum degree and the maximum total degree are essentially the same for
all projection levels, only on the first level a slight difference exists. This shows
that most benchmarks have a rather simple structure as most polynomials are
univariate and the multivariate polynomials never have the maximum degree.

We also noticed that with Brown’s operator, at times a whole projection
level could be skipped. This can happen if a variable is technically present, but
does not contribute to any polynomial that actually needs to be considered for
projection. This was the case for 11 instances on projection level 1 and for 137
instances on projection level 2. The improvements of Brown’s operator compared
to McCallum’s are rather small and they can handle the exact same benchmarks.
This however is no big surprise, as the real strength of Brown’s operator is in



Number of polynomials average median 75% qt max

Collins ≈ 783,14 11 116 24489

Hong ≈ 158,77 6 43 6056

McCallum ≈ 16,74 5 15 227

Brown ≈ 11,62 4 12 168

Max degree average median 75% qt max

Collins ≈ 26,32 6 26 419

Hong ≈ 26,16 6 26 419

McCallum ≈ 13,29 3 16 264

Brown ≈ 13,48 3 16 264

Max total degree average median 75% qt max

Collins ≈ 26,39 6 26 419

Hong ≈ 26,23 6 26 419

McCallum ≈ 13,34 3 16 264

Brown ≈ 13,53 3 16 264

Table 4: Results on projection level 2 (5583 instances)

the lifting phase, where the amount of lifting points are kept smaller due to the
manual adding of points, only when it is necessary.

Looking at the statistics that regard polynomial degrees, Collins’ and Hong’s
operators scored similar results. The same can be seen, when comparing Mc-
Callum’s operator to the one of Brown. However, there is a major gap between
these two groups (Collins’ approach vs McCallum’s design). This indicates the
huge step, that McCallum’s operator was able to make in the context of CAD.

Though a somewhat poor performance of Collins’s operator was to be ex-
pected, it performs much worse than we expected. The increase in the number
of polynomials from level 1 to level 2 was about 72 while Hong’s operator kept it
at about 18 and both McCallum’s and Brown’s operator stayed below 3. Also the
maximum degree is much higher for Collins’s operator compared to McCallum’s
while there is no significant difference between Collins’s and Hong’s operator or
McCallum’s and Brown’s operator. Altogether, Hong’s operator seems to be a
viable possibility for cases where McCallum’s operator is not applicable as it at
least reduces the number of polynomials significantly.

3.2 Full SMT solver

In a second test run, the previously selected 5698 samples were given to the
full SMT solver. The results are shown in Table 7 with a timeout of again 60
seconds. Note that in this scenario, most benchmarks would not cause a single
call to the CAD module but multiple theory calls due to the Boolean structure
of the problems. We can see that only a relatively small amount of benchmarks
is above the timeout, indicating that SMT-RAT does a reasonably good job in
exploiting the incremental nature of these theory calls. The previous scenario



Number of polynomials average median 75% qt max

Collins ≈ 117,00 3 10 22806

Hong ≈ 20,20 3 9 2009

McCallum ≈ 5,06 2 7 80

Brown ≈ 4,65 2 7 73

Max degree average median 75% qt max

Collins ≈ 11,79 1 4 286

Hong ≈ 11,66 1 4 286

McCallum ≈ 5,25 1 4 64

Brown ≈ 5,03 1 4 64

Max total degree average median 75% qt max

Collins ≈ 11,82 1 4 286

Hong ≈ 11,68 1 4 286

McCallum ≈ 5,28 1 4 64

Brown ≈ 5,06 1 4 64

Table 5: Results on projection level 3 (789 instances)

also considered all polynomials present in the problem while here, the theory
solver will oftentimes never see the full set of constraints as a subset of these is
enough to satisfy the formula or to establish unsatisfiability.

Furthermore, SMT-RAT interleaves the projection and lifting phases so that a
satisfying assingment can be found before the projection is finished. To do that,
the projection operator is deconstructed into what we call projection candidates,
for example the resultant of two polynomials. Whenever a projection candidate
is calculated, new polynomials may appear one level below and thereby spawn
new projection candidates on this level. All these projection candidates can be
processed individually, thus the projection is decomposed into many individual
tasks. After every projection candidate, lifting is continued on the incomplete
projection hoping that a satisfying assignment is found.

This can speed up the overall solving time significantly, but also has some
other effects that impede gaining any insight about the projection operators
in this scenario. Note that the projection operators not only produce different
polynomials, but may also generate the same polynomials in a different order.
Every newly produced polynomial induces new sample points which may be
satisfying and thus may immediately terminate the solving process. Hence, the
purely heuristic decisions of projection order – the order in which projection
candidates are processed – and lifting order – the order in which sample points
are lifted – can easily supersede any impact of the projection operator. Thus it
is even plausible that generating more polynomials could have a beneficial effect,
at least on satisfiable problems.

Close analysis within the SAT solver enables SMT-RAT to filter out constraints
based on the Boolean structure in many cases. In fact, some of the benchmarks,
that caused the greatest amount of polynomials in the first test run, turned out to



Number of polynomials average median 75% qt max

Collins ≈ 15,61 4 11 302

Hong ≈ 10,27 4 8 106

McCallum ≈ 7,91 3 6 29

Brown ≈ 5,46 3 5 26

Max degree average median 75% qt max

Collins ≈ 4,02 2 5 32

Hong ≈ 3,84 2 5 24

McCallum ≈ 3,43 1 4 16

Brown ≈ 2,74 1 4 16

Max total degree average median 75% qt max

Collins ≈ 5,25 2 6 32

Hong ≈ 5,07 2 6 24

McCallum ≈ 3,84 2 4 16

Brown ≈ 3,48 2 4 16

Table 6: Results on projection level 4 (147 instances)

Operator Solved Timeout average median 75% qt max

Collins 5041 657 ≈ 452,80 32 47 56538

Hong 5125 573 ≈ 233,30 36 55 48504

McCallum 5284 414 ≈ 216,38 45 72 38727

Brown 5299 399 ≈ 220,11 35 52 49497

Table 7: Statistics of full SMT-procedure, including runtimes in ms for solved
instances

be solvable in a very short amount of time. One example is the benchmark “meti-
tarski/polypaver-bench-sqrt-3d-chunk-0479.smt2”. Generating a total amount of
24575 polynomials in a full projection, it could be solved in 33 milliseconds due
to some contradicting bounds.

The running times on the benchmarks that could be finished are given in
the last four columns of Table 7. This data shows that the above effects dom-
inate the whole solving process. More than 75% of the solvable examples are
solved in less than 75 milliseconds with any projection operator, Collins’s even
being the fastest for the 75% quartile. Note that the four solvers solve different
benchmarks, for example the solver using McCallum’s operator solves instances
that Brown’s operators cannot cope with and vice-versa. Hence these numbers
are a bit skewed. Though it may be surprising that Brown’s operator only has a
small lead over McCallum’s, this can be explained by the structure of the inputs.
Brown’s operator eliminates coefficients from the projection, but as we have seen
in the comparison between the maximum degree and the maximum total degree,
the coefficients will usually have a small degree. Furthermore, removing these
coefficients of small degree may actually hinder the solver. It may be sufficient to
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Fig. 2: Running times in seconds of Brown vs. McCallum

consider these coefficients to generate a satisfying solution so that we can spare
the effort of computing resultants and discriminants.

3.3 McCallum vs. Brown

We now want to compare McCallum’s and Brown’s operator in more detail.
First we compared the overall performance of the solvers with McCallum’s and
Brown’s operator in Figure 2a where every cross represents a single SMT bench-
mark. As expected the solvers behave rather similarly and Brown’s operator
tends to solve more instances, but still a notable number of outliers exist for
both directions. It seems that in a full SMT solver, being lucky in the heuristics
can be more important than the choice of the projection operator. This suggests
that running multiple different projections in parallel could be beneficial. Note
that if the projection order of McCallum’s operator is forced to mirror the one
of Brown’s operator – that is the coefficients are projected last – both behave
almost identically.

In order to make use of a portfolio approach, several strategies that behave
as differently as possible are desirable. We tried several modifications to the
projection order, including deferring the projection of resultants as they tend
to lead to the greatest increase of polynomial degrees. Figure 2b shows the two
solver configurations that diverged most: McCallum with our regular projection
order that is mostly based on the polynomial degree, and Brown’s operator
deferring resultant computations.

As for the question whether the incompleteness of McCallum’s operator is
a problem in practice, we performed a test on 5889 benchmarks from the SMT
competition, being all those that were not trivially solved before even reach-
ing the CAD module. In 510 cases some polynomial vanished and 353 from
those were found to be satisfiable. Note that a vanishing polynomial does not
imply that the projection is incomplete: if the polynomial vanished over a zero-



dimensional cell, this could be repaired by adding delineating polynomials. The
remaining 157 were found to be unsatisfiable, and all of them are in fact un-
satisfiable. Hence we can conclude that McCallum’s operator indeed produces
incomplete projections for actual benchmarks, but they did not cause a single
error on our benchmark set.

We are working on using CoCoALib [1] to compute a square-free basis in the
projection and present some the preliminary results here. The solver becomes
slower by about 10% on average due to the additional effort spent in computing
the square-free basis and converting the polynomials. Nevertheless, it manages
to solve more problems than without these computations. Overvall, this seems
to indicate that for many benchmarks this computations is superfluous, but it
has a great impact for some other benchmarks.

Altogether, we can recognize the theoretically expected order of the different
projection operators with respect to the number of solved instances, though
it may not be as significant as expected and is not directly reflected in the
observed solving times. While Hong’s operator is a significant improvement over
Collins’s and McCallum’s again improves on Hong’s operator, the difference
between McCallum’s and Brown’s operator is small, though existent.

4 Conclusion

In this paper we provided some experimental results to compare the efficiency of
different projection operators in the cylindrical algebraic decomposition method,
both in a isolated theory solver and within a full SMT solver. In the isolated
setting, the practical analysis showed that the theoretical results hold on prac-
tical examples. In a full SMT solver however, other effects tend to dominate for
individual instances, but the overall trend is still evident.

Future work might include a closer look at the side cases, when using Brown’s
projection on examples, where points need to be added to the projection. Also
the runtimes on the tests, where Brown’s operator competed versus McCallum’s
operator, suggest a dual approach employing multiple projection operators in
parallel.

Another quite promising approach that is not yet considered is to use equa-
tional constraints to simplify the CAD procedure as described in [3].
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