
Synthetic Graph Generation from Finely-Tuned
Temporal Constraints

Karim Alami, Radu Ciucanu, and Engelbert Mephu Nguifo

Université Clermont Auvergne & CNRS LIMOS, France
karim.alami@etudiant.univ-bpclermont.fr, ciucanu@isima.fr, mephu@isima.fr

Abstract. Large-scale graphs are at the core of a plethora of modern
applications such as social networks, transportation networks, or the Se-
mantic Web. Such graphs are naturally evolving over time, which makes
particularly challenging graph processing tasks e.g., graph mining. To
be able to realize rigorous empirical evaluations of research ideas, the
graph processing community needs finely-tuned generators of synthetic
time-evolving graphs, which are particularly useful whenever real-world
graphs are unavailable for public use. The goal of this paper is to report
on an ongoing project that aims at generating synthetic time-evolving
graphs satisfying finely-tuned temporal constraints specified by the user.

1 Introduction

Large-scale graphs are used to model a variety of real-world domains. In practice,
both nodes and edges of such graphs have properties that are naturally evolving
over time. For example, in a geographical database storing information about
cities and transportation facilities, the nodes of type city have evolving proper-
ties e.g., weather and air quality, whereas the edges that encode transportation
facilities between cities have evolving properties e.g., price and duration.

The graph evolution over time makes particularly challenging the graph pro-
cessing tasks e.g., graph querying and mining. This motivated the community
to propose frameworks for building applications on time-dependent graphs e.g.,
Graphast [3], or historical graph management systems e.g., DeltaGraph [2].

To be able to realize rigorous empirical evaluations of research ideas, the
graph processing community needs tunable evolving graph generators, which are
particularly useful whenever real-world graphs are unavailable for public use.

In this paper, we report on our ongoing research on EGG (Evolving Graph
Generator), an open-source1 framework for generating evolving graphs based on
finely-tuned temporal constraints given by the user. We depict the architecture
of EGG in Fig. 1. We built EGG on top of gMark [1], a state-of-the-art static graph
generator. EGG takes as input (i) an initial graph generated by gMark, and (ii)
an evolving graph configuration that encodes how the evolving properties of
the nodes and edges of the graph from point (i) should evolve over time. The
output of EGG is a sequence of graph snapshots, each annotated with an interval

1
https://github.com/karimalami7/EGG

https://github.com/karimalami7/EGG


Static graph configuration
• Size
• Node and edge types
• Occurrence constraints
• Degree distributions

Evolving graph configuration
• # of snapshots
• Evolving properties (nodes and edges)
• Evolution constraints

gMark
Static graph generator

EGG
Evolving graph generator

RDF annotated
with temporal

information

Fig. 1. Architecture of EGG. The bottom components are part of the existing gMark [1]
static graph generator. The top components are part of our EGG contribution.

of integers. The semantics of time depends on the use case. In the running
example of this paper, a snapshot corresponds to a day. In other use cases that
we developed, we used snapshots representing e.g., years, semesters, and weeks.

Similarly to gMark, EGG is schema-driven and domain-independent. Through-
out the paper, we use as running example a geographical database, but we have
been additionally able to easily encode different application domains such as a
social network or a DBLP-like bibliographical network.

2 Overview of EGG
We present gMark static graph configurations (Section 2.1), EGG evolving graph
configurations (Section 2.2), EGG implementation challenges (Section 2.3), and
preliminary EGG experimental results (Section 2.4).

2.1 Static Graph Configurations

We illustrate via an example the static graph configuration that the user can
specify as gMark input. Assume that the user wants to generate graphs simulating
a geographical database storing information about cities, and different facilities
such as transportation and hotels. The user can specify as gMark input the
following types of constraints: (i) graph size, given as # of nodes; (ii) node types
e.g., city and hotel, and edge types e.g., train and locatedIn; (iii) occurrence
constraints e.g., 10% of the graph nodes should be of type city, whereas 90%
of the graph nodes should be of type hotel; (iv) degree distributions e.g.,

source type predicate
−−−−−−→

target type In-distribution Out-distribution

hotel locatedIn−−−−−−−→ city Zipfian Uniform [1,1]

meaning that we can have an edge of type locatedIn from a node of type hotel
to a node of type city, with a Zipfian in-distribution (since it is realistic to
assume that the number of hotels in a city follows such a power-law distribution)
and a uniform [1,1] out-distribution (since a hotel is located in precisely one city).

We call such gMark graph configurations as being static since the nodes
of type e.g., city and hotel are rarely created or deleted. Nonetheless, such
nodes (as well as the different edges connecting them) possess properties that
naturally evolve over time, in an interdependent manner. The user can specify
such evolving properties as input of EGG, that we detail in the next section.

2.2 Evolving Graph Configurations

We build on the example from Section 2.1 to introduce examples of evolving
properties that can be encoded as EGG evolving graph configurations. Assume



that the user generates with gMark a graph having nodes of type city and hotel,
and edges of type train (connecting two cities) and locatedIn (connecting a
hotel to its city). Next, the user wants to add properties that evolve over time for
the aforementioned types of nodes and edges, assuming that a graph snapshot
corresponds to a day. We give below examples of such properties, together with
their finely-tuned constraints to evolve among consecutive graph snapshots.

A node of type city has the following evolving properties:
– weather (unordered qualitative), which can have three uniformly-distributed

values (sunny, rainy, cloudy). There is a probability of 50% that weather

changes from a snapshot to the next one. Each of the three values can evolve
between two consecutive snapshots to any of the other ones, with the exception
of sunny, that cannot be followed by rainy.

– qAir i.e., “quality of air” (ordered qualitative), which can have ten possi-
ble values, following a binomial distribution with p=0.6. There is a probability
of 20% that qAir changes from a snapshot to the next one, and it can only
increment or decrement by 1 between two consecutive snapshots.

Moreover, a node of type hotel has the following evolving properties:
– star (ordered qualitative), which can have five possible values, following a

geometric distribution with p=0.65. It can only change every thirty snapshots,
with a probability of 10%, and it can only increment or decrement by 1.

– availRoom (quantitative discrete), which can have as values integers in
the interval [1,100], following a binomial distribution with p=0.5. There is a
probability of 80% that it changes from a snapshot to the next one, and it can
increment or decrement by an integer up to 5 between two consecutive snapshots.

– hotelPrice (quantitative continuous), whose values follow a normal dis-
tribution in an interval that is dynamically constructed depending on the value
of the property star. Moreover, hotelPrice is anti-correlated with availRoom

i.e., if availRoom decreases, then hotelPrice increases, and vice-versa.
The user can similarly specify evolving properties and constraints for edges

e.g., property trainPrice of edge type train.

2.3 Implementation Challenges

Building a system like EGG is an ambitious goal because, as outlined in the pre-
vious section, we aim at allowing the user to specify very expressive constraints.
This leads to some interesting challenges, that we briefly discuss in this section.

Computational complexity. As illustrated in Section 2.2, we allow the user to
specify evolution constraints where the value of a property among consecutive
snapshots depends on another property. We model the inter-dependencies be-
tween such evolving properties with a dependency graph. It is easy to see that
if the aforementioned dependency graph is cyclic, the generation algorithm may
not halt. Consequently, in our implementation we require that the dependency
graph is acyclic and we sort it topologically to decide in which order we should
apply the evolution constraints. Even for acyclic dependency graphs, we suspect
that it is NP-complete to decide whether there exists a sequence of graph snap-



shots satisfying the input constraints. The exact complexity is an open question
that we plan to attack in the near future.

Storage redundancy. A naive solution to store the generated graph snapshots
would be to entirely store each of them after it is generated. For the parts of the
graph that do not change every snapshot, this yields redundant storage. This is
why we rely on a storage format that uses named graphs to express temporal
information in RDF. Our output format (that we serialize using the TriG syntax)
allows us to decouple the storage of the static parts of the graph (i.e., structural
information satisfied in all snapshots) and the evolving parts of the graph (i.e.,
the property values that change from a snapshot to the next one).

2.4 Experimental Evaluation of EGG

Fig. 2. Evolving properties
for a node of type hotel.

We implemented in Python the first prototype of
EGG. The user can easily encode in JSON con-
straints as those presented in Section 2.2.

We observe the accuracy of the evolving graphs
generated with EGG in Fig. 2, where we depict the
evolving properties of one node of type hotel as
shown by the EGG visualization module. In partic-
ular, we observe that the anti-correlation between
availRooms and hotelPrice follows the constraints
shown in Section 2.2.

As for the scalability evaluation, we have run EGG with several use cases
and graphs of increasing sizes. In all cases, we observed that EGG has a linear
time behavior with respect to the studied parameters. More details about our
experimental observations are available on the EGG wiki2.

3 Conclusions and Future Work

We presented our ongoing research on EGG, a system for generating evolving
graphs based on finely-tuned constraints specified by the user. EGG is open-
source and can be already used by the graph processing community.

We next plan to thoroughly study the impact of EGG in improving the em-
pirical evaluations of existing temporal graph querying and mining systems.

References

1. G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and N. Advokaat.
gMark: Schema-driven generation of graphs and queries. IEEE Transactions on
Knowledge and Data Engineering, 29(4):856–869, 2017.

2. U. Khurana and A. Deshpande. Efficient snapshot retrieval over historical graph
data. In ICDE, pages 997–1008, 2013.

3. R. P. Magalhães, G. Coutinho, J. A. F. de Macêdo, C. Ferreira, L. A. Cruz, and
M. A. Nascimento. Graphast: an extensible framework for building applications on
time-dependent networks. In SIGSPATIAL, pages 93:1–93:4, 2015.

2
https://github.com/karimalami7/EGG/wiki

https://github.com/karimalami7/EGG/wiki

	Synthetic Graph Generation from Finely-Tuned Temporal Constraints

