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ABSTRACT
Recommender systems support users in �nding relevant items in

overloaded information spaces. Researchers and practitioners have

proposed many di�erent collaborative �ltering algorithms for dif-

ferent information scenarios, domains and contexts. One of the

la�er, are time-aware recommender methods that consider tem-

poral dynamics in the users’ interests in certain items, topics, etc.

While there is extensive research on time-aware recommender sys-

tems, surprisingly, researchers have paid li�le a�ention to model

temporal community structure dynamics (community dri�). In

consequence, recommender systems seldom exploit explicit and

implicit community structures that are present in online systems,

where one can see what others have been watching, sharing and or

tagging. In this paper, we propose a recommender method that not

only considers temporal interest dynamics in online communities,

but also exploits the social structure by the means of community

detection algorithms. We conducted o�ine experiments on the

Net�ix dataset and the latest MovieLens dataset with tag infor-

mation. Our method outperformed the current state-of-the-art in

rating and item-ranking prediction. �is work contributes to the

connection of two separate recommender research directions, in

which exploits community structure and temporal e�ects together

in recommender systems.
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1 INTRODUCTION
Since many years, recommender systems based on collaborative

�ltering techniques provide recommendations for us by applying

speci�c approaches on a huge rating matrix. However, it is expen-

sive to create and maintain such huge rating matrices for online

shops and rating websites. From our own experience, we know
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that we do not update ratings when our judgment has changed

due to changes in our taste, nor do we re�ect that our ratings

are based on the in�uence of somebody we know. But, research

has shown that we can increase the recommendation accuracy by

taking into account temporal e�ects with computational methods

e.g. changes in the user preferences or the item popularity over

time. �is has lead to the development of time-aware recommender

systems [21]. In parallel, the social network research community

has investigated the detection and analysis of community struc-

tures as implicit in�uence among members of a social network

[14]. Members of a community are supposed to possess similar

properties so that they form dense connections inside communi-

ties and sparse connections among them. Correspondingly, more

and more recommender systems consider community structures

to e.g. improve accuracy [9]. However, one important property of

social network research is still missing in recommender research,

namely the temporal dynamics of online community structures

[1, 22]. Temporal community structures - detected from explicit

and implicit users’ interactions and item-item networks - provide

dynamics of collective information carried by groups of people.

�ese communities are dynamic similar to the network, in which

this needs to be re�ected in recommender systems. To the best of

our knowledge, there is still no other work that explains to what

extent temporal dynamics of online communities can be e�ective

in the proposal of a recommender system.

Objective. In this line of research, we propose two recommender

models named CNSVD and TCNSVD. CNSVD considers the col-

lective user preferences and item receptions at the same time. TC-

NSVD, on the other hand, includes temporal dynamics of (over-

lapping) community structures, which is not yet addressed by the

research community. �ese models are extensions to the NSVD and

TNSVDmodels proposed by Koren [20, 21] - leaning upon neighbor-

hood and factor models of recommendation. Using user-user and

item-item networks contributes to the evaluation of (overlapping)

community detection algorithms as well as the graph construc-

tion methods. Furthermore, we perform extensive studies of the

proposed models on two large-scale and popular datasets - Movie-

Lens and Net�ix - and compare them with the state-of-the-art

approaches.
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2 RELATEDWORK
In this paper, the proposed algorithms are related to both time-

aware and community-aware recommender models. As such the

related work in the area is shortly reviewed.

Time-Aware Recommendation. Some research has been done in

the proposal of recommender systems dealing with temporal e�ects

in recent years. Campos et al. [5] presented a survey and analysis

of time-aware recommender systems. �ey claimed that time is

one of the most useful contextual dimensions in recommender

systems. Koren [21] applied a model-based collaborative �ltering

approach using a combination of neighborhood and factor models.

He used models that track temporal shi�s over several relevant

characteristics e.g. user and item biases, covering both long-term

and short-term temporal e�ects. Daneshmand et al. [10] assumed

a hidden item network structure that can be inferred from users’

sequences of selecting items. �e basic idea is that if two items in

the hidden network are related, then a user selecting one of the two

items is likely to also select the other item. Baltrunas and Amatriain

[2] proposed a slightly di�erent approach to time dependency in

recommendation, and assumed time-changing but repetitive user

preferences. �ey recommended music, which depends on the

time of day, week or year using a collaborative �ltering approach.

Charlin et al. proposed a dynamic matrix factorization model based

on Poisson factorization for recommendation, which considers

temporal users’ interests and item popularity [8].

Community-Aware Recommendation. �ere has also been work

on using community detection for recommendation tasks. Dol-

gikh and Jelinek [11] proposed an approach to recommend music

using community detection. �ey constructed an artist-tag net-

work for each user from the user’s favorite artists and the tags

assigned to these artists. Community detection was applied on

these networks to determine each user’s interest sub�eld, which

were then used for recommending artists to the user. Cao et al.

[7] applied a neighborhood-based collaborative �ltering approach

for recommending movies to users. �ey reduced computation

time and improved recommendation precision by using commu-

nity structures. �ey applied a community detection algorithm

on the network constructed from similarity among users which

was derived from the user-item ratings. Choo et al. [9] proposed

a neighborhood-based collaborative �ltering approach that uses

user communities. �e user network was derived from review-

reply pa�erns, i.e. if one user reviews an item and another user

replies to that review then there may be a relation between the two

users. User communities were derived from this network and used

as a basis for the recommendation process. Bellogin and Parapar

[3] constructed a user graph using Pearson correlation similarity

and applied normalized graph cuts to �nd clusters of users. �ese

clusters were then used for neighbor selection in user-based col-

laborative �ltering. Other approaches using community structures

alleviated the cold-start problem in collaborative �ltering. [25] and

[30] both addressed the cold-start problem for new users by taking

into account additional user information.

Summary. To the best of our knowledge, there are no approaches
that take into account temporal dynamics of community structures

to support recommendation. �us, the literature manifests that 1)

our knowledge regarding performance of (overlapping) community

structures on recommendation systems is imperceptible. 2) we

are not aware about the goodness of graph construction similarity

metrics, e.g. Jaccard, Cosine, etc, in time-evolving recommender

models. 3) we also know very li�le regarding the e�ect of metadata

information on graph construction in temporal community-aware

recommender systems. 4) we need models to connect temporal

dynamics with (overlapping) community structures to improve item

ranking and precision accuracy metrics in recommender systems.

3 PROPOSED RECOMMENDER MODELS
In this section, we introduce the proposed recommender models.

Koren [20] employed the neighborhood and factor models to com-

pute the rating of a speci�c user on a particular item. In this model,

weights of user or item similarities are interpreted as o�sets that

need to be added to a baseline estimation. In other words, this ap-

proach combines three components including a baseline estimation,

a neighborhood and a factor model, in which can be wri�en as

follows:

µ + bu + bi + |Iu |
− 1

2

∑
j ∈Iu

((ruj − buj )wi j + ci j )

+ qTi (pu + |Iu |
− 1

2

∑
j ∈Iu

yj ) ,

(1)

where

• the �rst block of terms refers to the baseline estimation, in which

µ is the average rating over all users and items and bu is the user

bias, i.e. the deviation of the average rating given by user u from

µ. Besides, bi is the deviation of the average rating given to item

i from µ (item bias).

• the second block of terms refers to the neighborhood model

contribution, in which Iu is the set of items rated by user u,wi j
relates to explicit rating feedback, which is multiplied by ruj−buj ,
and ci j is related to implicit feedback and is added whenever user

u has given a rating to item j . In addition, to avoid overestimation

of the rating of users who provide much feedback, i.e. |Iu | is

high, the estimation is scaled down by multiplying with |Iu |
− 1

2 .

• �nally the last block of terms indicates the factor model contri-

bution, in which qi and pu are vectors characterizing item i and
user u, respectively. Moreover, the user preference vector u is

complemented by a sum of vectors yj , that represent implicit

feedback from each item j ∈ Iu .

�is model is named Neighborhood-Integrated SVD (NSVD), in

which parameters, i.e. bu , bi ,wi j , ci j , yi j , qi and pu are learned by

minimizing a squared error function. Koren extended the NSVD

model by using temporal information to improve recommendation

accuracy. �e temporal information allows the modeling of user

preferences and item characteristics that change over time [21].

Temporal information was included into each of the three com-

ponents i.e., baseline estimation, neighborhood model and factor
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models as follows:

µ + bu (t ) + bi (t ) (2)

+ |Iu |
− 1

2

∑
j ∈Iu

e−ϕu · |t−tuj | ((ruj − buj )wi j + ci j ) (3)

+ qTi (pu (t ) + |Iu |
− 1

2

∑
j ∈Iu

yj ) , (4)

where

• the �rst block of terms refers to the time-aware baseline esti-

mation. bu (t ) and bi (t ) indicate the time-dependent user and

item bias at time t , in which bu (t ) can be computed as with

bu +αu · devu (t ) +bu,t . Here, bu , αu ·devu (t ) and bu,t describe
time-independent user bias, the linear dri� of the user bias and

a time-speci�c parameter capturing short-lived e�ects. More-

over, item characteristics are less complex to be described and

thus bi (t ) can be simply computed by bi + bi,Bin(t ) , in which

short-lived e�ects are captured through time by bi,Bin(t ) .
• the second block of terms describes the time-aware neighborhood

model contribution where the function e−ϕu · |t−tj | decays the
item contributions wi j and ci j such that ratings that are more

distant to time t have less impact on the estimation.

• the last block of terms indicates the contribution of the time-

aware factor model. pu (t ) represents the time-dependent user

preferences that can be captured through parameters including

time-independent preference, gradual and short-lived e�ects.

�is model is known as Time-aware Neighborhood-Integrated

SVD (TNSVD), in which parameters, i.e. bu , bu,t , bi , bi,Bin(t ) ,wi j ,

ci j , yi j , αu , αuk , ϕu , qi , puk and puk,t are again learned by mini-

mizing a squared error function. In the following subsections, we

introduce two models based on NSVD and TNSVD models.

3.1 Community-Aware NSVD Model
�e community-aware neighborhood-integrated SVD (CNSVD)

model is an extension of the NSVD model that use community

information to improve rating prediction accuracy. Similar to the

NSVD model, it consists of baseline estimation, neighborhood and

factor model contributions.

Baseline Estimation. For the baseline estimation, we presume that

user and item communities have their own bias. �e average rating

of a user community tends to deviate from the overall average

rating and each user’s average rating tends to deviate from the

community’s rating, and likewise with item communities. �is is

based on the assumption that users or items in a community have

similar preferences or characteristics, which may imply a common

bias and thus the baseline estimation bui , is extended as follows:

µ + bu + bCu + bi + bCi , (5)

, in which

• bCu shows the community bias for useru, in which Cu represents

the set of user communities that user u belongs to. We model

the user community bias as follows:

bCu =
∑
C ∈Cu

bC ·muC , (6)

where we sum over all communities that user u belongs to, in

other words, we add the corresponding biases bC weighted by

the user’s membership levelmuC regarding each community.

• bCi refers to the community bias for item i with Ci as the set of
item communities that i belongs to. Similarly, we de�ne the item

community bias as follows:

bCi =
∑
C ∈Ci

bC ·miC , (7)

where bC shows the community bias of community C , in which

miC represents the membership level of item i belonging to

community C .

Neighborhood Model. To use user community information for

the neighborhood model, we extend the original neighborhood

model to capture additional implicit feedback from each item that

has been rated by a member of one of the user’s communities. �e

extension is as follows:

|Iu |
− 1

2

∑
j ∈Iu

((ruj − buj )wi j + ci j ) + |ICu |
− 1

2

∑
j ∈ICu

di j , (8)

where the block of terms shows the community contribution in the

neighborhood model. Here, ICu represents the set of items that any

user belonging to one of user u’s communities has rated. �en, di j
shows the o�set that such an item j contributes to the rating for

item i .

Latent Factor Model. For the latent factor model, we again con-

sider the community information as implicit feedback, in which

each item rated by a user’s community contributes to the user’s pref-

erence vector pu . Using the original factor model, we can extend it

as follows:

(qi +
∑
C ∈Ci

oC ·miC +)
T (pu +

∑
C ∈Cu

oC ·muC+ +

|Iu |
− 1

2

∑
j ∈Iu

yj + |ICu |
− 1

2

∑
j ∈ICu

zj ),

(9)

where the vector zj represents the contribution from item j. Also,
to model the user’s communities, we introduce an additional vector

oC that represents the preferences or characteristics of community

C . Since a user can belong to multiple communities, we de�ne oCu
as the combined community preferences of all communities that

user u belongs to. �is is achieved by summing the community

factors oC weighted by the user’s membership levelmuC to each

community. Likewise, to model the item community characteristics,

we de�ne oCi as the combined characteristics of the communities

that item i belongs to. Combining baseline estimation, neighbor-

hood model and factor model from equations 5, 8 and 9, we compute

the predicted rating r̂ui from a user u to an item i .

3.2 Time and Community-Aware NSVD
(TCNSVD) Model

�e TCNSVD model is an extension of the TNSVD model that uses

temporal dynamics of community structures. To capture user and

item community dri�, i.e. time-changing community structures,
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we compute user and item graphs and their community structures

for several time ranges. Here, available time range is divided into

community time bins. �e set of communities of a user u at time

t is represented by Cu,CBin(t ) and the corresponding set of item

communities is shown by Ci,CBin(t ) , where CBin(t ) indicates a
function that returns the community time bin for a given time t .
TCNSVD model has three components that are explained in the

following.

Baseline Estimation. For the baseline estimation, we extend the

Equation 5 to capture time-dependent community biases and a

time-dependent linear dri� in community biases and thus we write

the baseline estimation for TCNSVD model as follows:

µ + bu + αu · devu (t ) + bu,t

+ bu,Period(t) + bi + bi,Bin(t ) + bi,Period(t)

+
∑

C ∈Cu,CBin(t )

(bC + bC,t ) ·muC +
∑
C ∈Cu

αC · devC (t ) ·muC +

∑
C ∈Ci,CBin(t )

(bC + bC,Bin(t ) ) ·miC ,

(10)

in which the block of terms shows the community contributions.

In this formula, the time-independent bias of community C is de-

noted as bC , and community bias based on short-lived e�ects at

time t is denoted as bC,t for user communities and bC,CBin(t ) for
item communities. Linear dri� in community biases is captured by

αC ·devC (t ). All community biases are summed over the respective

set of communities and weighted by the respective user’s or item’s

community membership level. For the time-independent biases and

the short-lived temporal e�ects, we use the dynamic community

structures. However, for the linear dri� we use static community

structures so that longer-term temporal e�ects on each community

can be captured. In addition, the periodic user and item biases are

also re�ected by bu,Period(t) and bi,Period(t) , where Period(t) repre-
sents a function that returns an index showing the week day of time

t . To keep our model from ge�ing overly complex, we capture only

one of these potential recurring temporal e�ects, namely weekly

recurring e�ects.

Neighborhood Model. For the neighborhood model, we use a

decay function e−ψu · |t−tj | on the additional implicit feedback di j ,
which was added to Equation 8. �is leads to the following formula:

|Iu |
− 1

2

∑
j ∈Iu

e−ϕu · |t−tj | ((ruj − buj )wi j + ci j )+

|ICu |
− 1

2

∑
j ∈ICu

e−ψu · |t−tj |di j .
(11)

Latent Factor Model. For the latent factor model, we change the

vector modeling the user community preferences oCu , which was

introduced in Equation 8 to being a function oCu (t ):

oCu (t ) =
∑
C ∈Cu

oC (t )·,muC , (12)

with the community preference vector oC being replaced by the

time-dependent vector function oC (t ). As with the user preferences

Model Learning Rate Regularization Factor
NSVD 0.1 0.1

TNSVD 0.001 0.001

CNSVD 0.01 0.1

TCNSVD 0.0001 1

Table 1: Best learning parameters for each model (tested on
hold-out data).

vector function, oC (t ) is made up of multiple functions, each repre-

senting a component of the vector, i.e. oC (t )
T = (oC1 (t ),oC2 (t ), . . . ,

oCn (t )). Each component is de�ned as:

oCk (t ) = oCk + αCk · devC (t ) + oCk,t k = 1, . . . ,n, (13)

where oCk is the time-independent part of the community prefer-

ences, oCk,t captures short-term e�ects and αCk · devC (t ) models

a linear shi� of community preferences. Using the user community

preferences, we extend the formula for the factor model as follows:

r̂ui (t ) = (qi+oCi )
T (pu (t )+oCu (t )+|Iu |

− 1

2

∑
j ∈Iu

yj+|ICu |
− 1

2

∑
j ∈ICu

zj ).

(14)

Koren [21] does not make the item vector qi time-dependent. He

claims that item characteristics are inherent and do not change with

time. We expect that this also applies to the item community vector,

so we also leave it to be time-independent. Finally, we combine the

baseline estimation, the neighborhood model and the factor model

by summing their predictions.

For all the models, a squared error function is minimized to learn

the parameters of the model e.g. regularization parameters, using

stochastic gradient descent. A regularization factor λ is used to

penalize high parameter values to avoid over��ing the training data.

An implementation is included in LibRec
1
and we adapt it to our

NSVD-based models [15]. We performed some validations on hold-

out data and found the optimum learning rate and regularization

parameters for the NSVD, TNSVD, CNSVD and TCNSVD models

using RMSE error. We selected the learning rate decay strategy

from LibRec and used the same combination of learning rate and

regularization for parameters of each model. �e best learning rates

and regularization parameters for each model are given in Table 1.

4 EVALUATION
Regarding experiments, we use the popular Net�ix (NF) and the

latest MovieLens (ML) dataset to evaluate the proposed recommen-

dation algorithms. �e basic statistics of the datasets are shown

Table 2. In MovieLens both ratings and tags information are avail-

able. As for tags-based graph construction, an edge is created

between any two users that have used the same tag on any item.

Similarly, an edge is created between any two items that have re-

ceived the same tag from any user [16]. Regarding MovieLens and

Net�ix graph construction based on rating information, we apply

k-NN proposed by Park et al. as an approach mainly suitable for

information retrieval and recommender algorithms [23]. As such,

to compute the similarities between users and items from the rating

information, we use similarity measures such as Pearson Correla-

tion, Cosine Similarity and Jaccard Mean Squared Distance (JMSD)

[4, 6, 17, 19, 28].

1
http://www.librec.net/

http://www.librec.net/
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Table 2: Basic statistics of Net�ix and MovieLens datasets.

Dataset Users Items Ratings
Net�ix 480,189 17,770 100,480,507

MovieLens 138,000 27,000 20,000,000

For the evaluation of our proposed recommender model, we

compute both rating prediction and the item ranking quality as

well as accuracy. For measuring the accuracy of rating predictions,

we used the Root Mean Squared Error (RMSE). For measuring the

accuracy of item rankings, we used the measures Precision at k
(Prec@k), Recall at k (Rec@k) and Normalized Discounted Cumu-

lative Gain (NDCG) [18, 27]. Finally, we use Wilcoxon Rank Sum

tests to identify statistical di�erences of the results generated by the

models [29]. Evaluation of time-aware recommender algorithms

is challenging since the time ordering of the ratings needs to be

considered and thus the use of cross validation approaches are not

suitable. Campos et al. [5] describe in detail the issues regard-

ing time-aware recommender systems in their 2014 UMUAI paper.

Instead of k-fold cross-validation, we applied a sliding-window ap-

proach taking snapshots along the timeline [12]. Taking a snapshot

at time t means using the ratings within a certain number of days

before t for training and the ratings within a certain number of

days a�er t for testing. In total we took �ve of these snapshots

over the timeline in each dataset and report the overall means in

the results section. Regarding complexity, the running times of

the proposed methods are more than the baselines, in which we

used a subsampled version of datasets on a compute cluster. We

considered a maximum running time of �ve days, in which TC-

NSVD and CNSVD models had higher running times compared to

NSVD and TNSVD models. As for future works, we plan to per-

form time complexity analysis of the models, and ignore individual

learning parameters to �nd a compromise between accuracy and

time complexity.

5 RESULTS
In the following section, we present the results of our o�ine simula-

tions. We did preliminary experiments on the current state-of-the-

art community detection algorithms regarding time complexity and

number of found communities. We chose DMID [26] and Walktrap

[24] as two alternatives that can identify overlapping and disjoint

communities. �ey not only scale well on large amount of data

but can also handle weighed and directed networks. To use Walk-

trap, a step size input parameter needs to be set that was 2 and 5

in our case. Figure 1 presents the results with respect to RMSE,

Prec@10 and Rec@10 for the NSVD, TNSVD, CNSVD and TCNSVD

models on the MovieLens dataset (for space reasons we omi�ed

the Net�ix results here which show similar tendencies). As shown,

the RMSE values are quite close to each other for both of the two

community detection algorithms investigated. However, as also

shown, Walktrap performs slightly be�er compared to the DMID

algorithm. Moreover regarding RMSE, algorithms based on the

TCNSVD model - using tags and ratings constructions - achieve

higher values than the CNSVD model. �is trend also holds for

precision as well as recall. In general though, the results show that

Walktrap (WT5) yields the be�er performance regarding RMSE,

CNSVD-tags TCNSVD-tags CNSVD-ratings TCNSVD-ratings

0.95

1

1.05

R
M
S
E

DMID

WT2

WT5
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0.02
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P
r
e
c
@
1
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CNSVD-tags TCNSVD-tags CNSVD-ratings TCNSVD-ratings
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c
@
1
0
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WT5

Figure 1: Comparison of model performance using DMID
and Walktrap as community detection algorithms on
ratings-based and tags-based graph construction on Movie-
Lens dataset. For the Walktrap we use two stepping param-
eters namely, 2 = WT2 and 5 = WT5.
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Figure 2: Comparison of model performance employing dif-
ferent similarity metrics for the k-NN graph construction
using the Net�ix dataset: Pearson correlation, cosine simi-
larity and Jaccard mean squared distance. �e parameter k
was set to 10 in this case.

recall as well as precision. �e only exception is TCNSVD recall

results based on tags and ratings, in which DMID slightly outper-

forms Walktrap versions. To verify the overall performance of the

proposed algorithms, online user studies need to be done.

Figure 2 illustrates how the models perform when using di�er-

ent similarity metrics using the Net�ix dataset (we omit for space

reasons the results of the MovieLens dataset, which though are

comparable). k was set to 10 in this case. As shown, there are ob-

servable di�erences with respect to the measures chosen for both

models. In general we can observe the following: Pearson achieves

in four cases the best results for RMSE, Prec@10 and Rec@10, fol-

lowed by Cosine and JMSD. �is pa�ern is also emerging when

testing with di�erent ks and the di�erent similarity metrics at the

same time. Table 3 shows the best performing parameters for the

ratings-based graph construction regarding RMSE, precision and

recall and the best performing parameters for k . To �gure out the

practical performance of the models and similarity metrics, we need

to deploy them online and study users’ feedback.

To illustrate how the models perform compared to some base-

lines, a series of experiments have been performed. First, themodels

were compared with the baseline methods NSVD and TNSVD on
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Table 3: Best performing k-NN graph construction parame-
ter values with respect to RMSE, precision and recall.

Model RMSE Precision@10 Recall@10
CNSVD k = 20, Pearson k = 10, Cosine k = 20, Cosine

TCNSVD k = 20, Pearson k = 10, Pearson k = 10, Pearson

Table 4: Performance di�erences of the community-aware
models to their baseline models for the MovieLens and Net-
�ix datasets. Statistically signi�cant di�erences are denoted
with *p<0.05, **p<0.01, ***p<0.001 based on a Wilcoxon
Ranked Sum test.

DS Model Graph Baseline ∆RMSE ∆NDCG ∆Prec@10 ∆Rec@10

M
L

TCNSVD Ratings TNSVD +3.91% +45.45 % *** +675.32 % *** +443.90% ***

Tags TNSVD +2.50 % ** +3.23 % * +35.78% ** -13.62% *

CNSVD Ratings NSVD +0.27% +1.26 % +1.07% *** +2.63% ***

Tags NSVD +0.59% -2.50% -20.55% -19.60% *

N
F TCNSVD Ratings TNSVD +28.14 % *** +15.67% *** +126.73% +115.90% ***

CNSVD Ratings NSVD -0.01 % +2.57 % *** +35.33 % +44.49 %

the MovieLens (ML) and Net�ix (NF) datasets. �erea�er, we com-

pared them to current state-of-the-art item-ranking models such as

WRMF and ItemKNN as present in the LibRec library.

Table 4 shows the �rst set of results in this respect. In general we

can observe that the TCNSVD model achieves the best results here.

For instance in the MovieLens dataset, compared to its baseline

(TNSVD), the method increases NDCG, Precision and Recall with

45.45 %, 675 % and 443 % in the best case relying on a ratings-based

graph. Similar trends are also observed for the Net�ix dataset. Here,

TCNSVD can also improve NDCG, Prec@10 and Rec@10 with 15.67

%, 126.73 % and 115.90 %, compared to it’s baseline method. �e

result “pa�erns” on the other hand for the CNSVD model are not

that clear as RMSE and NDCG values are sometimes decreased,

while Prec@10 and Rec@10 are not. �is is actually an interesting

behaviour which we need study further in future work.

Figure 3 provides an overview of the computed item ranking and

precision metrics. Regarding the MovieLens dataset and the NDCG

metric, the TCNSVD model could achieve the best results, that is

statistically be�er than the baselines WRMF, ItemKNN, CNSVD,

NSVD and TNSVD. TCNSVD surpasses the other baselines also

for Prec@10 and Rec@10 with even higher di�erences. As for

Prec@10, TCNSVD achieves 0.28359, which is higher than 0.18842

and 0.17433 as obtained by WRMF and ItemKNN. �e results and

the ranking of the methods are consistent with other benchmarks

run on the MovieLens dataset, although our evaluation protocol is

time-based [13]. As for the Net�ix dataset, again TCNSVD gives us

the best results with notable statistically signi�cant di�erences to

the other models.

6 SUMMARY & FUTUREWORK
�e main �ndings of the paper can be summarized as follows:

• We proposed a community-aware model named CNSVD based

on neighborhood and factor models of recommendation.

• Furthermore, we introduced TCNSVD as a model that considers

temporal community structure and dynamics.

• We showed the e�ect of community detection algorithms on the

recommendation performance and found that Walktrap is the

be�er option.
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Figure 3: Performance comparison of proposed CNSVD and
TCNSVD models with the baselines and other item rank-
ing algorithms based on Prec@10, Rec@10 and NDCG us-
ing LibRec2. Statistically signi�cant di�erences betweenTC-
NSVD and WRMF or TCNSVD and ItemKNN are denoted
with **p<0.01, ***p<0.001 based on aWilcoxon Ranked Sum
Test.

• Also it was shown that Pearson correlation as the similarity

metric for graph construction achieves the best performance

when considering temporal dynamics of community structures

in the recommendation task.

• Finally, we show that TCNSVD as a temporal and community-

aware recommender model performs sign be�er than CNSVD

and compared state-of-the-art baseline recommendation approaches

on the MovieLens and Net�ix datasets.

One limitation of the proposed CNSVD and TCNSVD models are

their high dimensionality. As such, it is planned for future work

to improve the models in such a way that less parameters need

to be set, e.g. by omi�ing individual user and item parameters.

In our experiments we selected the optimum learning rate and

regularization based on RMSE. Future work needs to assess whether

further improvements can be found when optimizing the models

e.g. with respect to NDCG.

Although temporal dynamics of overlapping community struc-

tures are considered by TCNSVD, modelling the e�ect of commu-

nity life cycles, i.e. birth, death, atrophy, grow, split and merge, on

recommendation systems still need to be studied. Moreover, we

plan to study the impact of time bins as well as speed of community

changes in the proposal of a recommender system. In addition,

more community detection algorithms need to be investigated with

our models, to identify best performing ones. Finally, we plan to in-

vestigate the e�ect of explicit community structures as the current

ones are based on implicit ones and already achieving remarkable

results.
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