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Abstract. In this work we present our participation in the ImageCLEF
2017 tuberculosis task. The task consists of detecting five tuberculosis
(TB) types and predicting drug resistance from lung CT (Computed To-
mography) volumes. Our approach is based on a previously developed
non-parametric method. Tested on CT images of Chronic Obstructive
Pulmonary Disease (COPD) patients, it consists of describing each sub-
ject as a collection of local feature descriptors embedded in a dissimilar-
ity space. The set of local features was extended for this work adding
new 3D texture descriptors. The results shows that our approach is able
to characterize several TB types, achieving a Cohen’s Kappa coefficient
of 0.1533, but does not suit for predicting drug resistance were it only
achieved an AUC of 0.5241.
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1 Introduction

Tuberculosis (TB) is an infectious disease considered an epidemic by the World
Health Organization [1]. Usually, the main organ affected is the lung. Early
detection and classification is essential for proper treatment. The diverse TB
types and resistance to drugs challenge the appropriate treatment. With this
scope, the ImageCLEF4 initiative proposed a tuberculosis task in 2017 [2]. The
aim of the TB task is to detect multi-drug resistance cases early and to identify
the different TB types from CT (Computed Tomography) volumes. More details
about the the other ImageCLEF 2017 tasks can be found in [3]. ImageCLEF is
an evaluation campaign on medical image analysis and retrieval that has been
organizing medical tasks since 2004 [4–6].

The Batman lab decided to participate in this task with an approach pre-
viously used for Chronic Obstructive Pulmonary Disease (COPD) cases [7]. A
first visualization of the training set offered by ImageCLEF suggested different
alterations in the lung parenchyma but with non-specific location, similar to

4 http://www.imageclef.org/ as of 31.05.2017



what happens in COPD patients. The approach consists of extracting regional
texture features on quasi-homogeneous regions of the lungs, considering each
patient as a bag of words (BoW). However, in contrast to a traditional BoW
approach, we structured the words building an underlying distribution between
the words of the different patients in a graph embedding. The procedure for
building this distribution is not based on any priors and makes it suitable for
cases when no pattern is known. It is supposed to differ along patients. Finally,
the classification is performed on the dissimilarity space of these distributions.

In the next section we present the details of the ImageCLEF TB datasets,
followed by the construction of the dissimilarity space, the classification meth-
ods used, and the selection of the runs submitted to the challenge. Section 3
summarizes the results obtained in the task and finally Section 4 exposes the
conclusions of our participation.

2 Methods

2.1 ImageCLEF TB Datasets

The ImageCLEF TB task 2017 was divided into two subtasks, both based on
lung CT images of patients with tuberculosis. The first task consisted of pre-
dicting multi-drug resistant (MDR) patients versus non-drug-resistant cases (DS,
drug-sensitive). The dataset was divided into two classes (MDR and DS) with
approximately 200 patients in each group. Table 1 contains the exact number
of subjects for both training and test sets. The second subtask consisted of a
multi-class classification problem. It contained patients with five tuberculosis
types. No information about the relation of the classes was suggested by the Im-
ageCLEF organizers, so they were considered independent in this approach. The
detailed numbers for this second dataset are specified in Table 2. Moreover, the
ImageCLEF organizers also provided automatic lung segmentations extracted
with the method introduced in [8]. Our approach used this segmentations to
restrict the region of interest to the lung fields.

Table 1. Number of patients per class
in the multi-drug resistance dataset.

Class Train Test

DS 134 101
MDR 96 113

Table 2. Number of patients per class
in the tuberculosis type dataset.

Class Train Test

Type 1 140 80
Type 2 120 70
Type 3 100 60
Type 4 80 50
Type 5 60 40

The structure of the challenge was the same for both subtasks. The training
CT images and their labels were released 1.5 months before the test set. The test
labels were never release but the submitted runs were evaluated. The participants



could submit up to 10 runs containing the predicted labels and the organizers
computed the performance measures. The results were made available on the
ImageCLEF 2017 TB task web page 5 at the end of the challenge.

2.2 Non-Parametric Dissimilarity Matrix

Fig. 1. Left and right corresponds to 3D visualizations of the supervoxelization results
for two patients of the dataset. Each color represents a different supervoxel label. The
number of supervoxels may vary for each patient as shown in this example. The center
of the figure illustrates an example of the KNN graph in the feature space. Each node
shape corresponds to a different patient (circle and star in this case). The color of each
node is equal to the color of the respective supervoxel label. The size of the node is
associated with its popularity (node degree).

The pipeline introduced for COPD detection in [7] was followed. This ap-
proach is referred to as the COPD approach. The lung area was first divided
into homogeneous regions using a supervoxel algorithm [9]. Figure 1 shows a
3D visualization of these regions for two patients of the dataset. Each patient is
represented by a set of features extracted from these regions. A total of 4 fea-
tures were used for this approach. The features are: a 32-bins intensity histogram
based on [10] (Hist); Haralick features from the Gray-Level Co-occurrence Ma-
trix (GLCM) following [11] (Haril); a rotation-invariant histogram of gradients
based on the Fourier transform introduced in [12] (sHOG); and features based
on the locally-oriented Riesz-wavelet transform presented in [13] (Riesz ). The
latter descriptor was not used in the COPD approach. For this work we chose
the 1st-order alignment method with 3rd-order Riesz filters and 4 scales.

The next step in the pipeline is to see each patient as a bag of features
with unknown density. Then, the Kullback-Leibler (KL) divergence was used
to compute the dissimilarities between the densities because presented better
results in the COPD case. To compute this measure, the densities were defined
with a k-Nearest Neighbor Graph (see Figure 1). The details of this procedure

5 http://imageclef.org/2017/tuberculosis as of 31.05.2017



can be found in the COPD approach article. Since this dissimilarity measure is
not a distance, we applied the same technique as in the previous work and we
define the similarity kernel between subjects by exponentiating the symmetric
KL divergence and projecting the resulting matrix onto a positive semi-definite
cone. The projection was done by setting all negative eigenvalues to zero.

2.3 Classification

Once the dissimilarity matrix was generated, several classifiers were tested in the
dissimilarity space. The classifiers are: Random Forests (RF), Logistic Regression
(LR), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and the
Gradient Boosting Classifier (GBC).

Given that the sample size is small and feature space has a large dimension-
ality, it is conceivable that the separating hyperplane is sensitive based on the
patients in the training set. In other words, the separating hyperplane slightly
changes for each fold in the cross-validation procedure. Therefore, patients close
to the boundary of the classes may change labels based on the fold but those
further away do not. To account for this phenomenon, we resemble the training
set and average the probability of the labels (bootstrap).

2.4 Run Selection

Five runs per subtask were finally submitted to the ImageCLEF TB challenge.
The runs were selected among several combinations of regional features and
classifiers based on the best accuracy obtained in the training sets. Moreover,
late fusion was attempted. The best runs and their configuration are shown in
Table 3.

Table 3. Run configuration with best results per subtask. The number in the run name
corresponds to the accuracy obtained in the training phase.

Subtask Run name Regional features Classifier

MDR MDR SuperVx Hist FHOG rf 0.648419 Hist and sHOG RF
MDR MDR SuperVx FHOG rf 0.637994 sHOG RF
MDR MDR SuperVx Reisz knn 0.624984 Riesz KNN
MDR MDR SuperVx Hist Reisz knn 0.605056 Hist and Riesz KNN
MDR MDR SuperVx Hist FHOG gbc 0.603953 Hist and sHOG GBC

TBT TBT SuperVx Hist FHOG lr 0.414000 Hist and sHOG LR
TBT TBT SuperVx Hist FHOG Reisz lr 0.426000 Hist, sHOG and Riesz LR
TBT TBT SuperVx Hist Reisz lr 0.426000 Hist and Riesz LR

The submitted run files were a subset of the best runs and a few fusion
approaches of several runs. For the MDR subtask these were:

– MDR SuperVx Hist FHOG rf 0.648419.csv.
– MDR SuperVx FHOG rf 0.637994.csv.



– MDR submitted top4 0.656522.csv (late fusion method). Class probability
averaged over the following runs: MDR SuperVx Hist FHOG rf 0.648419,
MDR SuperVx FHOG rf 0.637994, MDR SuperVx Reisz knn 0.624984, and
MDR SuperVx Hist Reisz knn 0.605056.

– MDR submitted top5.csv : Late fusion method using the top 5 runs, i.e.
the same four runs than in MDR submitted top4 0.656522.csv plus the
run MDR SuperVx Hist FHOG gbc 0.603953.

– MDR-submitted top1.csv : Same late fusion technique but only using the
best run MDR SuperVx Hist FHOG rf 0.648419. It was used to test the
late fusion procedure.

In the case of the TBT subtask, the submitted runs were:

– TBT SuperVx Hist FHOG lr 0.414000.csv.
– TBT SuperVx Hist FHOG Reisz lr 0.426000.csv
– TBT submitted bootstrap.csv (bootstrap method).
– TBT submitted top2 0.430000.csv (late fusion method): Class probability

averaged over the following runs: TBT SuperVx Hist FHOG lr 0.414000,
and TBT SuperVx Hist FHOG Reisz lr 0.426000.

– TBT submitted top3 0.490000.csv : Late fusion method like the previous
one adding the run TBT SuperVx Hist Reisz lr 0.426000.csv

3 Results

Tables 4 and 5 provide the results obtained by our method and the best run in
each of the subtasks. The selection of the runs was based on the cross-validation
accuracy obtained in the training phase. However, the final ranking was estab-
lished by the Area Under the Curve (AUC) in the MDR subtask, and by the
unweighted Cohen’s Kappa coefficient (Kappa).

Table 4. Results for our submitted runs in the MDR detection task. The best run of
the task is given as reference.

Group Name Run Run Type AUC ACC Rank
MedGIFT MDR Top1 correct.csv Automatic 0.5825 0.5164 1
BatmanLab MDR submitted top5.csv Automatic 0.5241 0.5164 13
BatmanLab MDR submitted top4 0.656522.csv Automatic 0.5130 0.5024 16
BatmanLab MDR-submitted top1.csv Automatic 0.4899 0.4789 24
BatmanLab MDR SuperVx Hist FHOG rf 0.648419.csv Automatic 0.4899 0.4789 25
BatmanLab MDR SuperVx FHOG rf 0.637994.csv Automatic 0.4601 0.4554 27

4 Conclusions

This work presents our method for the ImageCLEF 2017 tuberculosis task. The
same approach was applied to the two subtasks obtaining quite different results.



Table 5. Results for our submitted runs in the TB type classification. The best run
in the competition is given as reference.

Group Name Run Run Type Kappa ACC Rank
SGEast TBT resnet full.txt Not applicable 0.2438 0.4033 1
BatmanLab TBT SuperVx Hist FHOG lr 0.414000.csv Automatic 0.1533 0.3433 13
BatmanLab TBT submitted bootstrap.csv Automatic 0.1057 0.3033 18
BatmanLab TBT submitted top3 0.490000.csv Automatic 0.1057 0.3033 19
BatmanLab TBT SuperVx Hist FHOG Reisz lr 0.426000.csv Automatic 0.0478 0.2567 20
BatmanLab TBT submitted top2 0.430000.csv Automatic 0.0437 0.2533 21

For the MDR subtask our method achieved results slightly better than random
(both in AUC and accuracy). Although they do not differ much from the best
results, they are significantly worse than the results obtained with the COPD
dataset. This suggests that our approach was not perfectly suitable for this
task. In the case of the TB type classification task, the results are better, being
farther from the random performance. The results are not as good as other
methods of participants. It can be concluded that the different TB types present
differentiable visual patterns. The drug resistance patterns seem hard to identify
by structural defects. The fact that we could re-use a framework tested in a
different disease obtaining better results than random encourages us to follow
this line for characterizing other heterogeneous diseases.
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