
A Formal Proof of Correctness of a Distributed
Presentation Software System

Ievgen Ivanov, Taras Panchenko1

Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska st., Kyiv, 01601, Ukraine,

1 tp@infosoft.ua,
WWW home page: https://www.facebook.com/tpanchenko

Abstract. In this paper we present a formal proof of total correctness
for Infosoft e-Detailing 1.0 distributed presentation software using Is-
abelle proof assistant. We model execution of a distributed software as
a transition system with a global state that is composed of states of the
system’s components and show that under a certain progress assump-
tion, after a presenter switches the current slide to a given target slide,
the executions of this transition system reaches a state which all viewers
(clients) can see the target slide.

Keywords: software correctness, shared memory concurrency, interleav-
ing concurrency, safety property, liveness property, total correctness, for-
mal methods.
Key Terms: Software System, Environment, Characteristic, Methodol-
ogy, Experience.

1 Introduction

Infosoft e-Detailing (www.e-detailing.pro [2,3]) is a commercially distributed
presentation software which operates over a computer network and allows a pre-
senter (“manager”) to display slides to several viewers (“clients”). This software
is distributed among several computers/laptops/mobile devices - the manager’s
device and client’s devices. The manager gives a presentation consisting of a se-
quence of slides to the clients. The content of the slides does not change during
the presentation, but the order in which they are displayed and the duration of
the presentation of each particular slide are freely controlled by the manager in
real time. In general, the operation of the system can be considered as a sequence
of operation cycles, each of which consists of switching a slide on the manager’s
device and subsequent switching the view on all client devices. The number of
such cycles is unlimited, and the cycles continue till the end of the presentation.

The goal of the software is to ensure the that the clients see the slide cur-
rently selected by the manager. Obviously, there are delays between the time the
manager switches a new slide and the time the viewers see the new slide, mostly
caused by network propagation, but the system is designed to minimize such

delays. In particular, the following techniques are used for this purpose: pre-
sharing slides content among the clients, sending only the current slide index to
the clients instead of sending the slide content, implementing a execution-time-
optimized reaction to the slide updating notification.

In the previous works [2,3] we described the algorithm implemented by this
system in the imperative compositional language (ICPL) notation [4,5] and con-
sidered the problem of proving partial [2] as well as total [6] correctness of this
algorithm in the following sense: if at the start of a system operation cycle the
manager switches to a new slide s, then when the programs on the client’s devices
reach the end of their operation cycle, the clients will see the slide s.

In this paper we will consider this situation and formalize and prove a total
correctness property with more rigorous approach (automated instead of man-
ual proof), which guarantees that if at the start of a system operation cycle the
manager switches to a new slide s, then the program on the clients’ devices even-
tually reach the end of the operation cycle and when this happens the clients see
the slide s. We will prove this property under an assumption that at each point
in time during a system’s operation cycle, each client device program is either in
the final state of the operation cycle (it already displays the slide currently cho-
sen by the manager and performs no actions until the next operation cycle, i.e.
slide change by the manager), or is still working in the sense that either at the
current or at some future time moment it will make an execution step in accor-
dance with its algorithm. This assumption excludes a situation when some client
program stops working (is unable to perform an execution step) in the course
of a system’s operation cycle. The execution steps of client programs consist
of network data exchange steps (which consist of sending/receiving fixed-length
messages over a computer network) and internal computation steps (which take
place on the device). Thus a client program’s inability to make an execution
step may be caused by the reasons like: a client exits the software on his/her
device during the presentation, shuts off the device, disconnects the device from
the network (so no network data exchange steps can be completed), etc. When
such issues are excluded, our proof shows that the system eventually reaches a
state in which all the clients display the slide chosen the manager, so the oper-
ation cycle may be called “successful”. Thus this proof excludes the possibility
of non-terminating system operation cycles, which could arise e.g. as a result
of falling of client programs into infinite loops in the course of manager slide
change processing.

2 Overview of Infosoft e-Detailing

The Infosoft e-Detailing software operates on a hardware system which consists
of the central server, the manager’s device, and one or more client devices (such
as computers, mobile devices, tables). All client devices and the manager’s device
should be able to communicate with the central server over a computer network.
The components of the system are illustrated in Fig. 1.

Fig. 1. Infosoft e-Detailing Interactive Presentation System

Communications include HTTP(S)-requests with AJAX technology over the
internet on client and manager devices for data transfer and the server software,
which “synchronizes” the current slide between manager and clients in the way
depicted on Fig. 1 and described in [3,2] and in the next section in more details.
This architecture was designed to minimize continuous connection number and
time elapsed in waiting mode on the server side and for more flexibility in client
connections and supported devices range:

– possible temporary disconnections
– some network instability is acceptable
– no need to fix the count of clients
– most of devices supports AJAX and HTTP(S) as transferring technology

Despite of huge variety of existing presentation software on the market, this
system has a combination of unique characteristics or function set, which cannot
be found in any other system:

– like/dislike function for every slide with registration and post-analysis statis-
tics available

– support for enhanced requirements for secure material storage
– voting and testing during the presentation
– lecturer notes and per-slide time-log statistics in peer-to-peer mode
– rich slides content (video-, audio-materials)

All these requirements are not met by any well-known solution (we mean partial
analogues from Google, Apple, Microsoft, Webinar.*, Adobe, a large amount
of other world-wide and Ukrainian-market products) and this was one of the
reasons to develop and real need to have the new software presenting system
mentioned above.

3 The Model of System’s Behavior

In order to be able to formalize and prove the system correctness condition
which described above, we need to give a mathematical model of its behavior.
We will use state transition system as a model. The states in this transition
system are global states which include execution phases of all software compo-
nents of the system and the data stored in the memories of these components.
Transitions denote quite basic, but not elementary execution steps of software
components, including memory reading/storage (program variable assignments)
and exchanges of fixed length messages over a network (e.g. reading server-stored
slide index from a client device).
The global state of the system’s model includes:

– the index of the current slide stored on the central server (denoted as S);

– the index of the slide slideM that is currently displayed by the manager’s
device;

– the index of the slide the is currently displayed on the i-th client device
which we will denote as slideCi.

– the state of the local variables of the program of the i-th client device.

The behavior of the software system (including its server, manager, and client
parts) during one system operation cycle can be described in a simplified form
using imperative compositional language (IPCL) notation [4] as follows:

Manager ≡
[M1]S := slideM [M2]

Client ≡
[C1]newSlide := S;
while[C2](slideC = newSlide)do
[C3]newSlide := S;

end while
[C4]slideC := newSlide[C5]

Note that here the identifiers in square brackets ([]) mean the labels which
denote the code execution phases. E.g. the [M1]S := slideM [M2] means that
the manager’s program starts execution in a phase denoted as M1 (initial phase)
and sends the value slideM the server where it is stored in S, and when this
operation completes, the server updates the value S, and acknowledges success of
this operation, the manager’s program transitions to an execution phase denotes
as M2.
The behaviour of the distributed presentation software system with n clients

can be described in ICPL as follows:

Software =Manager || Clientn.

Here the n-th power means execution of n instances of a program in an
interleaving manner [5,7,4].

4 The Formalization and Proof of Total Correctness in
Isabelle

To formalize and prove the total correctness condition we will use Isabelle proof
assistant [8] which is a generic interactive proof assistant [9] based on a small
logical core. The core provides a meta-logic based on a weak form of type theory.
This meta-logic is used encode stronger (“object”) logics which can be used for
formalizing and proving mathematical statements and properties of programs:
first-order logic (FOL), higher-order logic (HOL), Zermelo-Fraenkel set theory
(ZFC), etc.

The proof assistant is interactive and requires user guidance. However, cer-
tain steps in the proof process can be performed automatically (using automated
theorem provers). Thus, in general, proof process may be called semi-automatic.
In order to formalize a particular fact, a user can introduce definitions of partic-
ular data types and predicates and functions on them which describe a certain
application domain in the language of the chosen object logic, and then state and
prove the lemmas and theorems about the introduced predicates and functions.
The correctness of such proofs is checked automatically by Isabelle.
In this paper we use the Isabelle’s HOL object logic to formalize the behaviour

of the presentation software system and state and prove its total correctness
condition.
Below we give the text of our Isabelle formalization with comments which

describe the purpose of various introduced elements. For more information about
the syntax and semantics Isabelle theories please refer to [8].

theory eDetailing imports Main
begin

— Firstly, let us define data types of the components of the state of the software system
(manager’s program state, client’s program state, server state (GlobalState) and the
data type of the state of the whole system (State) which includes them all. We also
define auxiliary data types ManagerLabel, ClientLabel which range over labels (code
execution phases) in the ICPL code given above and GlobalData, ManagerData, and
ClientData as polymorphic record types which range over memory states of the server,
manager, and client programs. These records consist of components which represent
assignments of values to variables which are referenced in the ICPL code (e.g. S is
the server variable which stores slide index, newSlide, slideC are client variables which
store slide indices, and slideC is the current slide on the client’s device, slideM is a
manager variable which stores the index of the manager’s current slide).

— ’a is a type parameter which denotes the type of slide index (e.g. natural number)
— ’c::finite is a type parameter which denotes the type of client index (e.g. a finite
type which has the same number of elements as the number of client devices)

datatype ManagerLabel = M1 | M2

datatype ClientLabel = C1 | C2 | C3 | C4 | C5

record ′a GlobalData =
S :: ′a

record ′a ManagerData =
slideM :: ′a

record ′a ClientData =
newSlide :: ′a
slideC :: ′a

datatype (′a, ′c::finite) State = State ManagerLabel

′c::finite ⇒ ClientLabel
′a GlobalData
′a ManagerData
′c::finite ⇒ ′a ClientData

— Now let us define the transition relation on states of the system. We define it as
a predicate Tr on pairs of states (s1, s2) which is true, if the system can transition
from s1 to s2 in accordance with the semantics of the ICPL code given above. This
transition predicate is represented as a disjunction of 6 simpler transition predicates
which denote possible transitions by the manager’s and client’s programs. Please see
[2,3] for the details on the meaning of Tr1-Tr6 and on how the transition predicate
can be obtained from ICPL code.

fun Tr1 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr1 (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) = ((M-1 =
M1) & (M-2 = M2) & (CS1 = CS2) & (S GD2 = slideM MD2) & (MD1 = MD2)
& (CD1 = CD2))

fun Tr2j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr2j j (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) =

((M-1 = M-2) & (GD1 = GD2) & (MD1 = MD2) &
((CS1 j = C1 & CS2 j = C2

& (∀ i . (i 6= j −→ CS1 i = CS2 i & CD1 i = CD2 i))
& slideC (CD1 j) = slideC (CD2 j)
& newSlide (CD2 j) = S GD2)))

fun Tr2 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr2 s1 s2 = (∃ j . Tr2j j s1 s2)

fun Tr3j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr3j j (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) =

((M-1 = M-2) & (GD1 = GD2) & (MD1 = MD2) & (CD1 = CD2)
&

(CS1 j = C2 & CS2 j = C4
& (∀ i . (i 6= j −→ CS1 i = CS2 i))
& slideC (CD1 j) 6= newSlide (CD1 j)))

fun Tr3 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr3 s1 s2 = (∃ j . Tr3j j s1 s2)

fun Tr4j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr4j j (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) =

((M-1 = M-2) & (GD1 = GD2) & (MD1 = MD2) & (CD1 = CD2)
&

(CS1 j = C2 & CS2 j = C3
& (∀ i . (i 6= j −→ CS1 i = CS2 i))
& slideC (CD1 j) = newSlide (CD1 j)))

fun Tr4 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr4 s1 s2 = (∃ j . Tr4j j s1 s2)

fun Tr5j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr5j j (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) =

((M-1 = M-2) & (GD1 = GD2) & (MD1 = MD2) &
((CS1 j = C3 & CS2 j = C2

& (∀ i . (i 6= j −→ CS1 i = CS2 i & CD1 i = CD2 i))
& slideC (CD1 j) = slideC (CD2 j)
& newSlide (CD2 j) = S GD2)))

fun Tr5 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr5 s1 s2 = (∃ j . Tr5j j s1 s2)

fun Tr6j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr6j j (State M-1 CS1 GD1 MD1 CD1) (State M-2 CS2 GD2 MD2 CD2) =

((M-1 = M-2) & (GD1 = GD2) & (MD1 = MD2) &
((CS1 j = C4 & CS2 j = C5

& (∀ i . (i 6= j −→ CS1 i = CS2 i & CD1 i = CD2 i))
& newSlide (CD1 j) = newSlide (CD2 j)
& slideC (CD2 j) = newSlide (CD1 j))))

fun Tr6 :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr6 s1 s2 = (∃ j . Tr6j j s1 s2)

definition ClientTr :: ′c ⇒ (′a, ′c::finite) State ⇒ (′a, ′c) State ⇒ bool
where
ClientTr i s1 s2 = (Tr2j i s1 s2 ∨ Tr3j i s1 s2 ∨ Tr4j i s1 s2 ∨ Tr5j i s1 s2 ∨ Tr6j
i s1 s2)

definition Tr :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
Tr s1 s2 = (Tr1 s1 s2 ∨ Tr2 s1 s2 ∨ Tr3 s1 s2 ∨ Tr4 s1 s2 ∨ Tr5 s1 s2 ∨ Tr6 s1
s2)

— Let us introduce several auxiliary predicates,

— The predicate “StartState s” means that s is a state in which the programs of the
manager’s device and all client devices are in their initial execution phases.

primrec StartState :: (′a, ′c::finite) State ⇒ bool
where
StartState (State M CS - - -) = (M = M1 & (∀ i . (CS i = C1)))

— The predicate “PreCond x s” (“precondition”) means that s is a state in which the
programs of all client devices are synchronized with the server, but the program of the
manager’s device is not, and the manager’s device displays the slide number x.
primrec PreCond :: ′a ⇒ (′a, ′c::finite) State ⇒ bool
where
PreCond x (State - - GD MD CD) = ((∀ i . (slideC (CD i) = S GD)) & slideM
MD 6= S GD & slideM MD = x)

— The predicate ‘‘PostCond x s” (“postcondition”) means that s is a state in which
the programs of the manager’s device and all client devices are synchronized with the
server and display the same slide x.
primrec PostCond :: ′a ⇒ (′a, ′c::finite) State ⇒ bool
where
PostCond x (State - - GD MD CD) = ((∀ i . (slideC (CD i) = x)) & slideM MD
= x & S GD = x)

— The predicate ‘‘ManagerStop s” means that s is a state in which the execution phase
of the program of the manager’s device is M2, i.e. this program has finished execution
after switching to a new slide.
primrec ManagerStop :: (′a, ′c::finite) State ⇒ bool
where
ManagerStop (State M - - MD -) = (M = M2)

— The predicate ‘‘ClientStop i s” means that s is a state in which the execution phase
of the program of the i-th client device is C5, i.e. this program has finished execution
after switching to a new slide.
primrec ClientStop :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ bool
where
ClientStop i (State - CL - - -) = (CL i = C5)

— The predicate ‘‘SwitchingDone x s” (“s is a state after switching to the slide x”)
defined below means that s is a state in which the manager program reaches the label
M2 and which is reachable from from some starting state s0 in which all clients are
synchronized with the server (i.e. display the slide the number of which is stored in
the variable S on the server) and the manager is not synchronized with the server (i.e.
the number of the slide displayed by the manager differs from the slide index stored
in the variable S on the server) and display the slide x by following transitions of the
transition system.

definition SwitchingDone :: ′a ⇒ (′a, ′c::finite) State ⇒ bool
where
SwitchingDone x s = (∃ s0 . StartState s0 ∧ PreCond x s0 ∧ Trˆ∗∗ s0 s ∧ Man-
agerStop s)

— The predicate “Run x sn” (“sn is a run after switching to x”) defined below means
that sn is a finite or infinite sequence of states, each consecutive pair of which is

related by a transition in the transition system, which starts in a state that satisfies
“SwitchingDone x s”, i.e. sn models an execution of the transition system which takes
place after the manager program completes execution.

definition Run :: ′a ⇒ (nat ⇒ (′a, ′c::finite) State option) ⇒ bool
where
Run x sn = ((sn 0) 6= None ∧ SwitchingDone x (the (sn 0)) ∧

(∀ n . sn (Suc n) 6= None −→
sn n 6= None ∧ Tr (the (sn n)) (the (sn (Suc n)))))

— If sn is a run, i is a client device index, k is an index in the domain of sn (i.e. a
discrete time moment), the predicate “Live sn i k” (“i-th client device program is live
at time k in sn”) means that at some index k′ ≥ k (i.e. in the future relative to k) sn
contains a transition caused by the execution of the i-th client device program.

definition Live :: (nat ⇒ (′a, ′c::finite) State option) ⇒ ′c ⇒ nat ⇒ bool
where
Live sn i k = (∃ k ′ . k ′ ≥ k ∧ (sn (Suc k ′)) 6= None ∧ ClientTr i (the (sn k ′)) (the
(sn (Suc k ′))))

— The predicate “Liverun x sn” (“sn is a live run after switching to x”) defined below
means that sn is a run after switching to x in which for each k and each client device
i, the i-th client device program is either live at k in sn, or its execution phase is C5
(i.e. it terminated).

definition Liverun :: ′a ⇒ (nat ⇒ (′a, ′c::finite) State option) ⇒ bool
where
Liverun x sn = (Run x sn ∧ (∀ i k . (sn k) 6= None −→ (Live sn i k ∨ ClientStop i
(the (sn k)))))

— If sn is a run, the predicate “Successful x sn” (“in the run sn, eventually, all devices
become synchronized with the server and display the slide x”) defined below means
that sn contains a state (“the (sn k)”), after which each state in sn (“the (sn k’)” for
k′ >= k) is such a state (“PostCond”) that the manager’s device and all client devices
are synchronized with the server and display the slide x.

definition Successful :: ′a ⇒ (nat ⇒ (′a, ′c::finite) State option) ⇒ bool
where
Successful x sn = (∃ k . (sn k) 6= None ∧ (∀ k ′ . k ′ ≥ k ∧ (sn k ′) 6= None −→
PostCond x (the (sn k ′))))

— The e-Detailing presentation software correctness condition which we prove in this
paper is formalized as “Liverun x sn implies Successful x sn” (for any x, sn), i.e. if sn is
a live run after switching to x, then in sn, eventually, all devices become synchronized
with the server and display the slide x. We prove this implication in the main theorem
given below.

— In order to prove the main result let us introduce a sequence of auxiliary definitions
and lemmas. We introduce predicates I1− I5 which denote invariants [1] of the system
(statements about the states of the system preserved by the transition relation). Their

conjunction is denoted as Inv. It is later used to prove properties of runs of the system.

primrec I1 :: (′a, ′c::finite) State ⇒ bool
where
I1 (State M - GD MD -) = ((M = M2) −→ (S GD = slideM MD))

primrec I2 :: (′a, ′c::finite) State ⇒ bool
where
I2 (State M CS GD MD CD) = (M = M1 −→ ((S GD 6= slideM MD

& (∀ i . (slideC (CD i) = S GD &
((CS i) = C1 ∨ (CS i) = C2 ∨ (CS i) = C3))))))

primrec I3 :: (′a, ′c::finite) State ⇒ bool
where
I3 (State - CS GD - CD) = (∀ i . (CS i = C4 −→ (

slideC (CD i) 6= S GD & newSlide (CD i) = S GD)))

primrec I4 :: (′a, ′c::finite) State ⇒ bool
where
I4 (State - CS GD - CD) = (∀ i . (CS i = C5 −→ slideC (CD i) = S GD))

primrec I5 :: (′a, ′c::finite) State ⇒ bool
where
I5 (State M CS GD - CD) = (∀ i . (CS i = C1 ∨ slideC (CD i) = newSlide (CD
i) ∨ (M = M2 & newSlide (CD i) = S GD)))

primrec I7j :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ bool
where
I7j i (State - CS GD - CD) = ((CS i = C3 −→ newSlide (CD i) = (slideC (CD
i))))

fun I7 :: (′a, ′c::finite) State ⇒ bool
where
I7 s = (∀ i . I7j i s)

definition Inv :: (′a, ′c::finite) State ⇒ bool
where
Inv s = (I1 s & I2 s & I3 s & I4 s & I5 s)

primrec slideMstate :: (′a, ′c::finite) State ⇒ ′a ⇒ bool
where
slideMstate (State M - - MD -) x = (slideM MD = x)

primrec ManagerComplete :: (′a, ′c::finite) State ⇒ ′a ⇒ bool
where
ManagerComplete (State M - - MD -) x = (M = M2 ∧ slideM MD = x)

definition PostInv :: ′a ⇒ (′a, ′c::finite) State ⇒ bool

where
PostInv x s = (ManagerComplete s x ∧ Inv s ∧ I7 s)

primrec ClientComplete :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ bool
where
ClientComplete i (State - - GD - CD) = (newSlide (CD i) = S GD ∧ slideC (CD
i) = S GD)

definition clientcompl :: (nat ⇒ (′a, ′c::finite) State option) ⇒ ′c ⇒ nat ⇒ bool
where
clientcompl sn i k = ((sn k) 6= None ∧ ClientComplete i (the (sn k)))

— Let us introduce a natural number-valued function f s i, where s is a state (in
the transition system) and i is a client. For each fixed i, λs.(f s i) plays the role of a
termination measure for the i-th client program, namely, its value is 0, if the client’s
program reached state corresponding to the end of the system’s operation cycle (the
i-th client device, the manager device, and the server are synchronized), and is greater
than 0, if it is still working. Moreover, the value of λs.(f s i) decreases in course of
operation i-th client program becoming smaller, when this program is closer to the
state in which f s i = 0. This function is used to prove the termination of the client’s
program reaction to manager’s slide change notification

fun f :: (′a, ′c::finite) State ⇒ ′c::finite ⇒ nat
where
f (State - CS GD - CD) i =
(if (newSlide (CD i) = slideC (CD i) ∧ (newSlide (CD i) = S GD)) then 0
else (if
(newSlide (CD i) = slideC (CD i) ∧ (newSlide (CD i) 6= S GD)) then (if CS i =

C1 then 3 else (if CS i = C2 then 4 else (if CS i = C5 then 2 else 3)))
else (if
(newSlide (CD i) 6= slideC (CD i) ∧ (newSlide (CD i) = S GD)) then (if CS i =

C1 then 3 else (if CS i = C2 then 2 else 1))
else 5)))

definition fsum :: (′a, ′c::finite) State ⇒ nat
where
fsum s = setsum (f s) {x . True}

definition ff :: ′c::finite ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
ff i s1 s2 = (f s2 i < f s1 i ∨ (f s1 i = 0 ∧ f s2 i = 0))

definition decrj :: ′c ⇒ (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
decrj i s1 s2 = (ff i s1 s2 ∧ (∀ j . j = i ∨ f s1 j = f s2 j))

definition decr :: (′a, ′c::finite) State ⇒ (′a, ′c::finite) State ⇒ bool
where
decr s1 s2 = (∃ i . decrj i s1 s2)

definition fsumval :: (nat ⇒ (′a, ′c::finite) State option) ⇒ nat ⇒ bool
where
fsumval sn v = (∃ k . (sn k) 6= None ∧ v = fsum (the (sn k)))

definition isminfsum :: (nat ⇒ (′a, ′c::finite) State option) ⇒ nat ⇒ bool
where
isminfsum sn m = (fsumval sn m ∧ (∀ v . fsumval sn v −→ m ≤ v))

lemma start : StartState s =⇒ PreCond x s =⇒ Inv s
by (cases s, auto simp add : Inv-def)

lemma trans1 : Tr1 s1 s2 =⇒ Inv s1 =⇒ Inv s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans21234 : Tr2 s1 s2 =⇒ Inv s1 =⇒ I1 s2 & I2 s2 & I3 s2 & I4 s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans25 : Tr2 s1 s2 =⇒ Inv s1 =⇒ I5 s2
apply(cases s1 , cases s2)
apply(auto simp add : Inv-def)
apply(metis ManagerLabel .exhaust)
apply(metis)
apply(metis)
apply(metis)
apply(metis ManagerLabel .exhaust)
by metis

lemma trans2 : Tr2 s1 s2 =⇒ Inv s1 =⇒ Inv s2
using Inv-def trans21234 trans25 by blast

lemma trans3 : Tr3 s1 s2 =⇒ Inv s1 =⇒ Inv s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans4 : Tr4 s1 s2 =⇒ Inv s1 =⇒ Inv s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans51234 : Tr5 s1 s2 =⇒ Inv s1 =⇒ I1 s2 & I2 s2 & I3 s2 & I4 s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans55 : Tr5 s1 s2 =⇒ Inv s1 =⇒ I5 s2
apply(cases s1 , cases s2)
apply(auto simp add : Inv-def)
apply(metis ManagerLabel .exhaust)
apply(metis)
apply(metis)
apply(metis)
apply(metis ManagerLabel .exhaust)
by metis

lemma trans5 : Tr5 s1 s2 =⇒ Inv s1 =⇒ Inv s2
using Inv-def trans51234 trans55 by blast

lemma trans6 : Tr6 s1 s2 =⇒ Inv s1 =⇒ Inv s2
apply(cases s1 , cases s2)
apply(simp add : Inv-def)
by (metis ClientLabel .distinct)

lemma trans7j : Tr1 s1 s2 ∨ Tr2j i s1 s2 ∨ Tr3j i s1 s2 ∨ Tr4j i s1 s2 ∨ Tr5j i s1 s2
∨ Tr6j i s1 s2 =⇒ I7j i s1 =⇒ I7j i s2
apply(cases s1 , cases s2)
by auto

lemma trans7 : Tr s1 s2 =⇒ I7 s1 =⇒ I7 s2
apply(simp only : Tr-def)
apply(cases s1 , cases s2)
apply(auto simp add : trans7j)
apply(metis ClientLabel .distinct(9))
apply(metis ClientLabel .distinct(15))
apply(metis)
apply(metis ClientLabel .distinct(9))
by metis

lemma trans-inv : Tr s1 s2 =⇒ Inv s1 =⇒ Inv s2
using Tr-def trans1 trans2 trans3 trans4 trans5 trans6 by blast

lemma lem-mgrc-mon: Tr s1 s2 =⇒ ManagerComplete s1 x =⇒ ManagerComplete
s2 x
apply(cases s1)
apply(cases s2)
by (auto simp add : Tr-def)

lemma postinv-mon: Tr s1 s2 =⇒ PostInv x s1 =⇒ PostInv x s2
by (metis PostInv-def lem-mgrc-mon trans7 trans-inv)

lemma postinv-rmon: Trˆ++ s1 s2 =⇒ PostInv x s1 =⇒ PostInv x s2
apply(erule tranclp-induct)
by (auto simp add : postinv-mon)

lemma mcpinv : StartState s0 =⇒ PreCond x s0 =⇒ Trˆ∗∗ s0 s1 =⇒ (ManagerComplete
s1 x −→ PostInv x s1)
apply(erule rtranclp-induct)
apply(cases s0)
apply(simp)
apply(auto simp only : PostInv-def)
apply(metis (no-types, hide-lams) rtranclp-induct start trans-inv)
apply(subgoal-tac I7 s0)
apply(metis (mono-tags , hide-lams) rtranclp-induct trans7)
apply(cases s0)
apply(simp)
apply(simp add : trans-inv)
using trans7 apply blast
done

lemma slmd-mon: slideMstate s0 x =⇒ Tr s0 s1 =⇒ slideMstate s1 x
apply(auto simp add : Tr-def)
apply (metis State.exhaust Tr1 .simps slideMstate.simps)
apply (metis State.exhaust Tr2j .simps slideMstate.simps)
apply (metis State.exhaust Tr3j .simps slideMstate.simps)
apply (metis State.exhaust Tr4j .simps slideMstate.simps)
apply (metis State.exhaust Tr5j .simps slideMstate.simps)
by (metis State.exhaust Tr6j .simps slideMstate.simps)

lemma slmdinv : PreCond x s0 =⇒ Trˆ∗∗ s0 s1 =⇒ slideMstate s1 x
apply(erule rtranclp-induct)
apply(metis PreCond .simps State.exhaust slideMstate.simps)
apply(simp add : slmd-mon)
done

lemma mstopcompl : PreCond x s0 =⇒ Trˆ∗∗ s0 s1 =⇒ (ManagerStop s1 −→ Man-
agerComplete s1 x)
apply(erule rtranclp-induct)
apply(cases s0 , cases s1)
apply(simp)
apply(auto)
apply(metis (full-types)ManagerComplete.simps ManagerStop.simps State.exhaust slideM-
state.simps slmd-mon slmdinv)
apply(simp add : lem-mgrc-mon)
done

lemma sdpinv : SwitchingDone x s =⇒ PostInv x s
by (metis SwitchingDone-def mcpinv mstopcompl)

lemma lt1 : ManagerComplete s1 x =⇒ Tr1 s1 s2 =⇒ decr s1 s2
apply(simp only : ff-def decr-def)
apply(cases s1)
apply(cases s2)
by auto

lemma lt2 : Tr2j i s1 s2 =⇒ ff i s1 s2
apply(simp only : ff-def)
apply(cases s1)
apply(cases s2)
by auto

lemma lt2a: Tr2j i s1 s2 =⇒ j 6= i =⇒ f s1 j = f s2 j
by (cases s1 , cases s2 , simp)

lemma lt3 : Inv s2 =⇒ Tr3j i s1 s2 =⇒ ff i s1 s2
apply(simp only : ff-def)
apply(cases s1)
apply(cases s2)
by (auto simp add : Inv-def)

lemma lt3a: Tr3j i s1 s2 =⇒ j 6= i =⇒ f s1 j = f s2 j
by (cases s1 , cases s2 , simp)

lemma lt4 : Tr4j i s1 s2 =⇒ ff i s1 s2
apply(simp only : ff-def)
apply(cases s1)
apply(cases s2)
by auto

lemma lt4a: Tr4j i s1 s2 =⇒ j 6= i =⇒ f s1 j = f s2 j
by (cases s1 , cases s2 , simp)

lemma lt5 : I7 s1 =⇒ Tr5j i s1 s2 =⇒ ff i s1 s2
apply(simp only : ff-def)
apply(cases s1)
apply(cases s2)
by auto

lemma lt5a: Tr5j i s1 s2 =⇒ j 6= i =⇒ f s1 j = f s2 j
by (cases s1 , cases s2 , simp)

lemma lt6 : I3 s1 =⇒ Tr6j i s1 s2 =⇒ ff i s1 s2
apply(simp only : ff-def)
apply(cases s1)
apply(cases s2)
by auto

lemma lt6a: Tr6j i s1 s2 =⇒ j 6=i =⇒ f s1 j = f s2 j
by (cases s1 , cases s2 , simp)

lemma trjdecr : PostInv x s1 =⇒ ClientTr i s1 s2 =⇒ decrj i s1 s2
apply(auto simp add : PostInv-def ClientTr-def)
apply(metis lt2 lt2a decrj-def)
apply(metis Tr3 .simps lt3 lt3a trans3 decrj-def)
apply(metis lt4 lt4a decrj-def)

apply(metis I7 .elims(3) lt5 lt5a decrj-def)
apply(metis Inv-def lt6 lt6a decrj-def)
done

lemma postinv-tr : PostInv x s1 =⇒ Tr s1 s2 =⇒ decr s1 s2
apply(auto simp add : PostInv-def Tr-def)
apply(metis lt1)
apply(metis lt2 lt2a decr-def decrj-def)
apply(metis Tr3 .simps lt3 lt3a trans3 decr-def decrj-def)
apply(metis lt4 lt4a decr-def decrj-def)
apply(metis I7 .elims(3) lt5 lt5a decr-def decrj-def)
apply(metis Inv-def lt6 lt6a decr-def decrj-def)
done

lemma ftrmon: PostInv x s1 =⇒ Tr s1 s2 =⇒ f s2 i ≤ f s1 i
apply(subgoal-tac decr s1 s2)
apply (metis decr-def decrj-def ff-def nat-le-linear not-less)
by (simp only : postinv-tr)

lemma fttrmon: PostInv x s1 =⇒ Trˆ++ s1 s2 =⇒ (∀ i . f s2 i ≤ f s1 i)
apply(erule tranclp-induct)
apply(subgoal-tac decr s1 y)
apply(simp add : ftrmon)
apply(simp only : postinv-tr)
apply(metis ftrmon order .trans postinv-rmon)
done

lemma fsttrmon: PostInv x s1 =⇒ Trˆ∗∗ s1 s2 =⇒ fsum s2 ≤ fsum s1
apply(subgoal-tac PostInv x s1 =⇒ Trˆ++ s1 s2 =⇒ fsum s2 ≤ fsum s1)
apply(metis Nitpick .rtranclp-unfold eq-iff)
by (simp add : fttrmon fsum-def setsum-mono)

lemma ccf0 : ClientComplete i s =⇒ f s i = 0
apply(cases s)
by auto

lemma fnzcc: f s i 6= 0 ∨ ClientComplete i s
apply(cases s)
by auto

lemma cceq : ClientComplete i s = (f s i = 0)
using ccf0 fnzcc by blast

lemma fsumsub: f s (i ::(′c::finite)) ≤ fsum s
apply(simp only : fsum-def)
apply(subgoal-tac setsum (λ j . (if j = i then (f s i) else 0)) {x . True} = f s i)
apply(smt eq-iff not-less not-less0 setsum-mono)
apply(smt finite mem-Collect-eq setsum .cong setsum.delta ′)
done

lemma fs0cc: fsum s = 0 =⇒ ClientComplete i s
apply(subgoal-tac f s i = 0)
apply(simp only : cceq)
by (metis fsumsub le-0-eq)

lemma ccfs0 : ∀ i . ClientComplete i s =⇒ fsum s = 0
by (simp add : ccf0 fsum-def)

lemma fseq : fsum s = 0 ←→ (∀ i . ClientComplete i s)
by (auto simp add : fs0cc ccfs0)

lemma fs0pc: ManagerComplete s x =⇒ Inv s =⇒ fsum s = 0 =⇒ PostCond x s
apply(subgoal-tac ∀ i . ClientComplete i s)
apply(cases s)
apply(auto simp add : Inv-def PostCond-def)
apply(simp only : fs0cc)
done

lemma decfsum: decrj i (s1 ::(′a, ′c::finite) State) s2 =⇒ (f s1 i 6= 0) =⇒ fsum s2 <
fsum s1
apply(subgoal-tac f s2 i < f s1 i)
apply(auto simp add : decrj-def)
apply(subgoal-tac ∀ i . f s2 i ≤ f s1 i ∧ finite {c:: ′c . True})
apply(simp only : fsum-def)
using setsum-strict-mono-ex1 apply blast
using le-eq-less-or-eq apply fastforce
apply (simp add : ff-def)
done

lemma seqtr : Run x sn =⇒ (sn k) 6= None =⇒ (sn k ′) 6= None =⇒ k ≤ k ′ =⇒ Trˆ∗∗
(the (sn k)) (the (sn k ′))
apply(induct k ′)
apply(simp)
by (metis le-Suc-eq rtranclp.simps Run-def)

lemma seqpi : Run x sn =⇒ (sn k) 6= None =⇒ PostInv x (the (sn k))
apply(induct k)
apply(metis sdpinv Run-def)
by (metis postinv-mon Run-def)

lemma seqfsmon: Run x sn =⇒
(sn k) 6= None =⇒ (sn k ′) 6= None =⇒ k≤k ′ =⇒ fsum (the (sn k ′)) ≤ fsum (the

(sn k))
by (metis seqpi fsttrmon seqtr)

lemma rundom: Run x sn =⇒ (sn k ′) 6= None =⇒ ∀ k . k≤k ′ −→ (sn k) 6= None
apply(induct k ′)
apply simp
by (metis le-Suc-eq Run-def)

lemma runfsdecr : Run x sn =⇒
Live sn i k =⇒ ∃ k ′ ≥ k . (sn k ′) 6= None ∧ (fsum(the (sn k ′)) < fsum (the (sn

k)) ∨ ClientComplete i (the (sn k ′)))
apply(auto simp only : Live-def)
apply(subgoal-tac (decrj i (the (sn k ′)) (the (sn (Suc k ′))) ∧ f (the (sn k ′)) i 6= 0)
∨ ClientComplete i (the (sn k ′)))
apply(subgoal-tac (sn (Suc k ′)) 6= None ∧ (fsum (the (sn (Suc k ′))) < fsum (the (sn
k)) ∨ ClientComplete i (the (sn k ′))))
apply (meson le-Suc-eq Run-def)
apply(subgoal-tac fsum (the (sn (Suc k ′))) < fsum (the (sn k ′)) ∨ ClientComplete i
(the (sn k ′)))
apply(subgoal-tac fsum (the (sn k ′)) ≤ fsum (the (sn k)))
using less-le-trans apply blast
apply(subgoal-tac (sn k) 6= None ∧ (sn k ′) 6= None)
apply(simp only : seqfsmon)
apply(simp add : seqfsmon)
apply(metis option.distinct(1) Run-def rundom)
using decfsum apply auto[1]
apply(metis cceq option.distinct(1) Run-def seqpi trjdecr)
done

lemma cscc: PostInv x s =⇒ ClientStop i s =⇒ ClientComplete i s
apply(cases s)
using Inv-def PostInv-def apply force
done

lemma lfsdecr : Liverun x sn =⇒ (sn k) 6= None =⇒
∃ k ′ ≥ k . (sn k ′) 6= None ∧ (fsum(the (sn k ′)) < fsum (the (sn k)) ∨ Client-

Complete i (the (sn k ′)))
apply(subgoal-tac (Live sn i k ∨ ClientStop i (the (sn k))))
apply(metis cscc eq-imp-le Liverun-def runfsdecr seqpi)
apply(simp add : Liverun-def)
done

lemma minfslv : Liverun x sn =⇒
(sn k) 6= None =⇒ isminfsum sn m =⇒
m < fsum (the (sn k)) ∨ (∃ k ′ . clientcompl sn i k ′)

apply(subgoal-tac (∃ k ′ ≥ k . (sn k ′) 6= None ∧ fsum(the (sn k ′)) < fsum (the (sn
k))) ∨ (∃ k ′ ≥ k . (sn k ′) 6= None ∧ ClientComplete i (the (sn k ′))))
apply(simp only : clientcompl-def)
apply(metis eq-iff fsumval-def isminfsum-def not-le)
apply(metis lfsdecr)
done

lemma clcompl :
assumes a0 : Liverun x sn
shows ∃ k ′ . clientcompl sn i k ′

proof −
have fsumval sn (fsum (the (sn 0))) using assms fsumval-def Liverun-def Run-def
by metis

then have ∃ m . isminfsum sn m by (metis (full-types) ex-least-nat-le isminfsum-def
le0 not-le)
then obtain k m where (sn k) 6= None ∧ fsum(the (sn k)) = m ∧ isminfsum sn
m by (metis fsumval-def isminfsum-def)
then show ?thesis using minfslv a0 by (metis not-less-iff-gr-or-eq)
qed

lemma ccik : Liverun x sn =⇒
clientcompl sn i0 k =⇒ clientcompl sn i k ′ =⇒ k ′ ≤ k =⇒ clientcompl sn i k
apply(simp only : clientcompl-def)
apply(subgoal-tac PostInv x (the (sn k ′)) ∧ Trˆ∗∗ (the (sn k ′)) (the (sn k)))
apply(smt cceq fttrmon le-0-eq rtranclp-induct rtranclp-into-tranclp1)
by (metis Liverun-def seqpi seqtr)

lemma clcompla:
assumes a0 : Liverun x sn
shows ∃ k . ∀ i . clientcompl sn i k
proof −
let ?A = λ i . (SOME k ′ . clientcompl sn i k ′)
let ?k = Max (range(?A))
have ?k ∈ range(?A) by simp
then obtain i0 where ?k = ?A i0 by blast
then have kdef : clientcompl sn i0 ?k by (metis assms clcompl someI-ex)
have ccA: ∀ i . clientcompl sn i (?A i) by (metis assms clcompl someI-ex)
have ∀ i . clientcompl sn i ?k
proof
fix i
let ?k ′ = ?A i
have ?k ′ ≤ ?k ∧ clientcompl sn i ?k ′ by (simp add : ccA)
then show clientcompl sn i ?k using ccik kdef a0 by metis
qed
then show ?thesis by blast
qed

lemma corr0 :
assumes a0 : Liverun x sn
assumes a1 : isminfsum sn m
assumes a2 : m 6= 0
shows False
proof −
obtain k where ∀ i . clientcompl sn i k using clcompla a0 by metis
then have (sn k) 6= None ∧ fsum (the (sn k)) = 0 by (simp add : clientcompl-def
fseq)
then have isminfsum sn 0 by (metis fsumval-def isminfsum-def le0)
then have m ≤ 0 using a1 using isminfsum-def by blast
then show ?thesis using a2 by simp
qed

lemma corr1 : Liverun x sn =⇒ ∃ k . (sn k) 6=None ∧ fsum(the(sn k)) = 0
apply(subgoal-tac isminfsum sn 0)

apply(simp add : fsumval-def isminfsum-def)
apply(subgoal-tac ∃ m . isminfsum sn m)
using corr0 apply fastforce
apply(subgoal-tac fsumval sn (fsum (the (sn 0))))
apply(metis (full-types) ex-least-nat-le isminfsum-def le0 not-le)
apply(metis fsumval-def Liverun-def Run-def)
done

lemma corr2 : Run x sn =⇒
(sn k) 6=None ∧ fsum(the(sn k)) = 0 =⇒ k ′ ≥ k =⇒ (sn k ′) 6= None =⇒

fsum (the (sn k ′)) = 0
apply(subgoal-tac PostInv x (the (sn k)) ∧ Trˆ∗∗ (the (sn k)) (the (sn k ′)))
using fsttrmon apply fastforce
by (auto simp add : seqpi seqtr)

— Now let us formulate and prove the main result – the e-Detailing presentation
software correctness condition, which, informally, means that if sn is a live run after
switching to x, then in sn, eventually, all devices become synchronized with the server
and display the slide x.

theorem Main-result : Liverun x sn =⇒ Successful x sn
apply(subgoal-tac ∀ k . Run x sn ∧ (sn k) 6= None ∧ fsum (the (sn k)) = 0 −→
PostCond x (the (sn k)))
apply(metis corr1 corr2 Liverun-def Successful-def)
apply(metis PostInv-def fs0pc seqpi)
done

end

5 Conclusions

We have presented proof of total correctness of the Infosoft e-Detailing 1.0 soft-
ware system using Isabelle proof assistant. This gives us confidence that the
software provides a correct implementation of the slide presentation algorithm
and demonstrates a method of application of interactive theorem proving to
software verification problems which are not limited to safety property checking.
Other examples ([10,11] etc.) could also be checked and re-proved with Is-

abelle proof assistant help as extended samples of this rigorous approach to
software engineering.

References

1. Hoare, C.A.R. An Axiomatic Basis for Computer Programming. Communications
of the ACM. Vol. 12, no. 10. 576–583 (1969)

2. Polishchuk, N., Kartavov, M. and Panchenko, T. Safety Property Proof using Cor-
rectness Proof Methodology in IPCL. Proceedings of the 5th International Scientific
Conference ”Theoretical and Applied Aspects of Cybernetics”. Kyiv: Bukrek. 37–44
(2015)

3. Kartavov, M., Panchenko, T. and Polishchuk, N. Properties Proof Method in IPCL
Application To Real-World System Correctness Proof. International Journal ”In-
formation Models and Analyses”. Sofia, Bulgaria, ITHEA. Vol. 4, No. 2. 142–155
(2015)

4. Panchenko, T. The Methodology for Program Properties Proof in Compositional
Languages IPCL [in Ukrainian]. Proceedings of the International Conference ”The-
oretical and Applied Aspects of Program Systems Development” (TAAPSD’2004).
Kyiv. 62–67 (2004)

5. Panchenko, T. The Method for Program Properties Proof in Compositional Nom-
inative Languages IPCL [in Ukrainian]. Problems of Programming. No. 1. 3–16
(2008)

6. Kartavov, M., Panchenko, T. and Polishchuk, N. Infosoft e-Detailing System Total
Correctness Proof in IPCL [in Ukrainian]. Bulletin of Taras Shevchenko National
University of Kyiv. Series: Physical and Mathematical Sciences. No. 3. 80–83 (2015)

7. Panchenko, T. Compositional Methods for Software Systems Specification and Ver-
ification (PhD Thesis) [in Ukrainian]. Kyiv. 177 p. (2006)

8. Nipkow, T., Paulson, L. C., Wenzel, M. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer. 226 p. (2003)

9. Wiedijk F. The Seventeen Provers of the World. Foreword by Dana S. Scott. F.
Wiedijk (editor), Lecture Notes in Artificial Intelligence, Vol. 3600, Springer-Verlag
Berlin Heidelberg (2006)

10. Panchenko, T. Application of the Method for Concurrent Programs Properties
Proof to Real-World Industrial Software Systems. Proceedings of the Interna-
tional Conference on ICT in Education, Research, and Industrial Applications
(ICTERI’2016). 119–128 (2016)

11. Ostapovska, Yu., Panchenko, T., Polishchuk, N. and Kartavov, M. Correctness
Property Proof for the Banking System for Money Transfer Payments [in Ukrainian].
Problems of Programming. No. 2-3. 119–132 (2016)

	A Formal Proof of Correctness of a Distributed Presentation Software System

