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Abstract. Analogical reasoning has been implemented in agents to use
information about past experiences to guide future action. A similar
process for analogical reasoning would enable a robot to reuse past ex-
periences, such as the tasks that an interactive robot could learn from
a human teacher. However, in a robotics domain, analogical reasoning
must be performed over the knowledge obtained from sensor input and
must result in actionable output in the form of the robot’s joint configu-
rations. Thus, robotics provides a challenging domain for analogical rea-
soning, as abstraction plays a necessary role in representing the robot’s
task knowledge. We explore the problem of abstraction for a robot which
performs analogical reasoning, and provide an example task illustrating
how abstraction is necessary for a robot to reason over learned tasks.
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1 Introduction

In the context of an agent which learns to execute tasks, analogical reasoning
can be used to transfer known task knowledge from a source task to address an
unfamiliar, target problem. A similar process can be applied to a robotic agent,
where the problem the robot seeks to address is a task environment observed in
the real-world, and the task plan the robot executes consists of a series of motor
commands. After observing a new target problem, the robot would identify a
relevant task plan from memory, using a method such as that described in [2],
and then reuse the known task plan to address the target problem. However, the
problem of reusing learned actions to address an unfamiliar problem is still a dif-
ficult challenge [10]. Actions can be learned in a way such that small adaptations
in the task requirements can be made, such as moving objects from their original
location in the learned task [6], or to respond to larger changes in the target task
by collecting additional experience in the target domain [12, 11]. However, these
approaches transfer task knowledge by directly adapting the action representa-
tion, and do not address the task at a higher-level of abstraction, such as at the
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goal-level. This limits the number of target problems in which a task represen-
tation can be reused. Case-based approaches have been used to enable action
transfer at the strategic level in domains such as RoboCup soccer [4, 3, 5, 7], and
in problems requiring case retrieval and adaptation based on both surface fea-
tures and action goals [9]. However, transferring action strategies assumes that
the task knowledge has already been represented at a pre-determined level of
abstraction.

By implementing an analogical reasoning approach to task transfer, a robot
could reuse task knowledge in a wider range of target problems. However, a
challenge of applying analogical reasoning to the robotics domain is that it must
operate over knowledge represented at a low-level of abstraction. This problem
makes it di�cult to identify high-level analogs between a source and target prob-
lem, such as similar relationships between the robot’s actions and the objects it
observes, and then use this analogy to address the target problem. We introduce
the challenges of applying analogical reasoning in a robotic agent, and describe
preliminary results demonstrating how the level of abstraction at which task
knowledge is represented a↵ects how it can be transferred.

2 Problem Domain

We focus on the problem of enabling analogical reasoning for a robot which
learns to complete real-world tasks on a tabletop workspace, such as pouring a
cup or stacking a set of blocks. We assume that the robot is taught the task by a
human teacher who moves the robot’s arm through the action of completing the
task. This results in a representation of the task containing two forms of input:

– A point-cloud representation of the observed scene, consisting of p
x,y

=
<r, g, b, d> containing the color (in RGB format) and depth of each x, y
coordinate in the observed frame.

– A joint-space trajectory recorded during the task demonstration, containing
a set of joint configurations d

t

= <j0, j1, ..., jn> where j
n

is the position of
a single joint in the robot’s arm at the timestamp t.

Both the source and target environments are perceived via the overhead
camera. However, while an action is learned for the source task, the robot does
not yet have an action model which can be executed to achieve the task in
the target environment. This representation occurs at a low-level of abstraction

because it does not present any relation between the task goal, the observed
objects, and/or the demonstrated action. Thus, the analogs between a source and
target problem are not initially apparent, and it becomes essential to abstract
the task representation at some level in order to perform analogical reasoning.

3 Abstractions

We approach the problem of analogical reasoning in a robotic domain as one
of correctly abstracting a task demonstration for each reasoning problem. When
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the robot receives a demonstration of the task, it is stored in memory in the
representation S =< D,T,O, F > where:

– D is the set of sub-skill models recorded during the demonstration, where
D =< d0, ..., dn > and n is the number of sub-skills comprising the task.
Each subskill d

i

is represented as a Dynamic Movement Primitive (DMP)
that is trained from the task demonstration as defined by [8]. This skill
representation allows the robot to later reproduce a motion trajectory that is
similar to the original demonstration, but with modified starting and ending
point locations.

– T is the set of object relations that express the spatial o↵set between the
end point location of each skill and the locations of objects observed at the
start of the demonstration, e.g. T =<<

x

t0, yt0, zt0 >, ..., <
x

t
n

,
y

t
n

,
z

t
n

>>
for n sub-skills.

– O is the set of observed object labels, where O =< o0, ..., oi > and o
i

lists a
single object’s identifying label.

– F is the set of observed object features, where F =< f0, ..., fi > and f
i

lists
the object features associated with object o

i

, such as object location, dimen-
sions, hue, a↵ordances, and properties. These features are derived from the
point-cloud representation of the environment as observed from an overhead
camera, and are derived using the algorithm described in [13].

We derive several abstractions of this representation, as listed in Table 1. In
the first abstraction, most of the demonstration representation is retained, with
the exclusion of low-level features (such as object locations and orientation) that
are specific to the environment in which the task was learned. The second rep-
resentation further abstracts the task by removing object labels, thus removing
the assumption that all instances of the task will contain the same objects. A
result of this abstraction is that the robot must additionally be provided with
a mapping between objects in the source and target environments before it can
execute the task using this representation. We currently provide this mapping
manually; however, in future work, we intend to have the robot predict this ob-
ject mapping by further interacting with the human teacher. In [1], we describe
an approach to object mapping in which the robot interacts with the human
teacher to receive object ”hints”, which are correspondences between an object
in the source environment and an object in the target environment. Once the
robot has received a mapping hint, it uses this correspondence to infer which fea-
tures should be used to map the remaining objects [1]. In future work, we plan to
integrate this approach to object mapping with our approach to similarity-based
task abstraction and transfer.

The third abstraction is the highest-level representation, in which only the
sub-skill models are retained. By excluding the object relations element of the
demonstrated task, which dictates the relation between the robot’s hand and
each object during the task, the task constraints which were present in the
demonstration are no longer enforced. Thus, a new set of task constraints must
be introduced so that the task plan can be executed accordingly. We currently
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Demonstration Sub-skills, Object Relations, Object Labels, Object Features
Abstraction 1 Sub-skills, Object Relations, Object Labels
Abstraction 2 Sub-skills, Object Relations
Abstraction 3 Sub-skills

Table 1: Features Present at Each Level of Similarity

(a) Source
Environment

(b) Displaced
Objects

(c) Replaced
Objects

(d) Replaced Scoop

Fig. 1: Variants of the Scooping Task Environment

provide these updated constraints manually, with future work addressing the
problem of inferring task constraints. Additionally, as in the second abstraction,
an object mapping is necessary before the task can be executed.

4 Experiment

We evaluated the impact of abstraction on variations of a scooping task, shown in
Figure 1, in which the target environment di↵ered from the source environment
in one of three ways: (i) object displacement, in which all objects were retained
but moved to di↵erent locations, (ii) object replacement, where new objects
were introduced and displaced, and (iii) scoop replacement, which altered the
constraints of the task since the robot now needed to keep its hand at a di↵erent
height to account for the change in scoop length.

4.1 Preliminary Results

After providing a single demonstration of the scooping task to the robot learner,
we counted the number of successful task executions performed by the robot in
each of ten di↵erent target environments when using each of the three abstraction
levels. These results are recorded in Table 2. The task could be executed consis-
tently in the displaced-objects environments using any of the three abstractions,
since these target environments were most similar to the source environment.

However, in problems where the target environment was more dissimilar from
the source environment, an abstracted representation was necessary to correctly
execute the task. The replaced-objects environments could only be addressed
consistently when the task was represented at the second or third levels of ab-
straction, and the replaced-scoop environments could only be addressed using the
third, most-abstracted representation. These results suggest that as the source
and target environment become more dissimilar, abstraction is necessary in order
to correctly address the target task.
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Abstraction 1 Abstraction 2 Abstraction 3
Displaced-Object Environments 10/10 10/10 10/10
Replaced-Object Environments 0/10 10/10 9/10
Replaced-Scoop Environments 0/10 0/10 8/10

Table 2: Success Rates for Each Abstraction Applied to the Scooping Task

5 Conclusion

Task transfer becomes a more nuanced problem when the agent’s input and
output occurs in the domain of low-level perception and action, because the
task must first be abstracted using a higher-level representation. The described
experiment and preliminary results support the claim that there is a correlation
between (i) the level of similarity between the source and target environments
and (ii) the level of abstraction that should be used to address a transfer problem.
This indicates that di↵erent transfer problems may require that knowledge is
represented at di↵erent levels of abstraction.

In future work, we plan to address the problem of detecting the level of
similarity between the source and target environments. Once a level of similarity
has been determined for a particular transfer problem, the appropriate level of
abstraction for transfer can be selected.
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