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Abstract. One means to support for design-by-analogy (DbA) in practice involves 
giving designers efficient access to source analogies as inspiration to solve problems. 
The patent database has been used for many DbA support efforts, as it is a pre-
existing repository of catalogued technology. Latent Semantic Analysis (LSA) has 
been shown to be an effective computational text processing method for extracting 
meaningful similarities between patents for useful functional exploration during 
DbA. However, this has only been shown to be useful at a small-scale (100 patents). 
Considering the vastness of the patent database and realistic exploration at a large-
scale, it is important to consider how these computational analyses change with 
orders of magnitude more data. We present analysis of 1,000 random mechanical 
patents, comparing the ability of LSA to Latent Dirichlet Allocation (LDA) to 
categorize patents into meaningful groups.  Resulting implications for large(r) scale 
data mining of patents for DbA support are detailed. 
Keywords: Design-by-analogy � Patent Analysis � Latent Semantic Analysis 
� Latent Dirichlet Allocation � Function-based Analogy

1 Introduction 
Exposure to appropriate analogies during early stage design has been shown to 
increase the novelty, quality, and originality of generated solutions to a given 
engineering design problem [1-4]. Finding appropriate analogies for a given design 
problem is the largest challenge to practical implementation of DbA. There have been 
numerous efforts to address this challenge with computational support for targeted 
access to design repositories, which will be reviewed next.  The major research gap is 
in the scale of implementation, the size of the repository being accessed.  To address 
this gap, we compare two computational approaches to processing design repository 
content (patents) for categorization and similarity judgment, with the goal of both (1) 
evaluating the methods in direct juxtaposition to one another, and (2) developing a 
method to examine the effectiveness of data synthesis techniques at a large scale. In 
the context of the Case-Based Reasoning (CBR) Workshop on Computational 
Analogy, this work directly addresses methods for identifying and retrieving 
analogies, similarity measures for analogy, analogical distance metrics, and data 
mining techniques for textual CBR. 

2 Background 
2.1 Patent-Based Design and DbA Tools 
Patents are often used as input for design tools and repositories because of the large 
amount of information captured by the patent database, already deemed novel and 
useful in nature by its inherent patentability [5]. Patents have been used to develop 
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conceptual graphs of claims [6] and dependency structures and content relationships 
[7]. Patents have been mapped to: extract the implicit structure in the data to support 
DbA [8-10], to understand overlap in IP portfolios for mergers and acquisitions [11], 
to search through patents for DbA support [12], to assist with patent infringement 
analysis in the biomedical arena [13], and to build a taxonomy from the data [14]. 
TRIZ, the Theory of Inventive Problem Solving, is one the major efforts involving the 
use of the patent database to support design [15], and a number of tools have been 
developed based upon the original efforts of Genrich Altshuller [15-26]. The 
computational analysis presented in this paper contributes to these efforts by showing 
a direct comparison of two leading computational text analysis that can and do serve 
as the basis of many of these and future patent based design tools. 
2.2 Latent Dirichlet Allocation (LDA) 
Within the large field of “data mining,” a body of knowledge has emerged that 
provides methods for managing large document archives (text corpus).  Tools have 
been developed that can summarize a corpus, classify articles into categories, identify 
common themes, and help users find relevant articles.  A specific class of methods, 
called topic modeling, is particularly promising for its potential to form a readily 
explorable database of patents, or other documents, for use in DbA.  As one of the 
leaders in this area notes [27], “topic modeling algorithms are statistical methods that 
analyze the words of the original texts to discover the themes that run through them, 
how those themes are connected to each other, and how they change over time.”   

Topic modeling grew from LSA in several directions.  Inputs to methods typically 
include a word-document matrix that records the number of times a particular word is 
included in one document. In the early 2000’s, a different approach called Latent 
Dirichlet Allocation (LDA) [28] was developed, where the basic idea is “that 
documents are represented as random mixtures over latent topics, where each topic is 
characterized by a distribution over words.”   

Many variants of LDA have been developed over the years.  Of note, supervised 
LDA methods enable the user to specify some topics and the corpus analysis seeks to 
include these seeded topics in its overall probabilistic model [29, 30].  Another 
extension is the use of nonparametric Bayesian methods to determine hierarchies of 
topics from LDA results [31, 32]. More recently, several researchers have investigated 
variants of PCA and other least-squares regression formulations for topic modeling, 
including sparse matrix formulations.  El Ghaoui et al. [33] compared LASSO 
regression [34] and sparse PCA [35] to LDA and found comparable efficacy at topic 
modeling, but that LASSO and sparse LDA were significantly more efficient. 
Another group investigated Non-negative Matrix Factorization (NMF) [36] for 
interactive topic modeling and found computational performance sufficiently fast [37].  
2.3 Latent Semantic Analysis (LSA) 
LSA is a computational text analysis tool that builds a semantic space from a corpus 
of text. This semantic space is then used to compute the similarity between words, 
sentences, paragraphs, or whole documents for a wide variety of purposes [38-41]. 
Note that this semantic space is a high-dimensional vector space (typically 300 or 
more dimensions) with little inspectable value to humans; additional methods are 
needed to create that inspectable structure. After performing LSA, the results can be 
compared directly to LDA output, or can become input for further algorithmic 
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processing to understand the similarity values in a different way. 
In ref. [9], the functional content (verbs) and surface content (nouns) of patents 

were processed and mapped separately, yielding structures that have the potential to 
develop a better understanding of the functional and surface similarity of patents, for 
the sake of analogical knowledge transfer. Structures created with this methodology 
yield spaces of patents that are meaningfully arranged into labeled clusters, and 
labeled regions, based on their functional similarity or surface content similarity. 
Examples show that cross-domain analogies and transfer of knowledge based on 
functional similarity can be extracted from the function based structures, and even 
from the surface content based structures as well.  

More generally, LSA has mixed reception due to its inability to match observed 
data, for example predicting human word associations.  This is due to the nature of the 
spatial representation that is intrinsic to LSA, forcing symmetry in similarity of words 
and imposition of the triangle inequality, among others.  While these criticisms are 
valuable, they are at the word-to-word comparison level, which may or may not 
become trivial with very large corpuses and repository sizes. 

3 Research Methods 
3.1 Theoretical Approach 
LSA gives a direct comparison between different patents in the form of a cosine 
similarity matrix, where document similarities range from -1 (the two documents are 
complete opposites) to 1 (the two documents are the same). However, LDA works a 
bit differently, in that it assigns the words of a document to different topics, and has 
no output that directly compares documents. However, using a document vector 
technique, described in a subsequent section on the implementation of LDA, it is 
possible to use the data output from LDA to build a matrix of document similarities. 

For the purposes of comparison, the actual values within the document-similarity 
matrices obtained from LSA and LDA are not important. In order to compare the two 
methods, only the order of similarity between documents was used. This was done by 
organizing the document-similarity matrices so that for a given column, every row 
down, starting from the second, represents a document that is less similar to the 
document in the first row than all of the documents above it (see Fig. 1).  
 By comparing the order in which documents were rated on similarity between LSA 
and LDA, it is possible to judge how similar or different the results of the two 
methods are. In the case that the two methods yield substantially different results, a 
qualitative analysis can be done to determine if one method better sorts based on 
functionality. There are many ways to go about this, but one effective check is to look 
at the top 50 rows in the document-similarity matrices, and count the average number 
of patents with the same core functions (determined by first author, not automated), 
then see which method yielded a greater number. 

3.2 Data Selection 

Patents were selected from a set of all US CPC patents found in the bulk data storage 
system of the United States Patent and Trademark Office (USPTO) at 
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https://data.uspto.gov/data2/patent/classification/cpc/. For this study, only patents 
from the CPC section F, the section for mechanical patents, were used. Any patents 
that were cross-listed under multiple CPC sections were removed from the study’s 
dataset in order to reduce the scope of the data for document matching, in an effort to 
get more coherent results from both the LDA and LSA methods. In addition, 
any withdrawn patents were removed from the dataset. Finally, any patent 
number that is below 3,930,270 is not accessible on the USPTO search online and 
was removed. 

Once the study dataset was finalized, four patents were selected manually for 
a small-scale test. For the large-scale test, 996 patents were selected using a 
pseudo-random number generator built into MatLab. 996 patents were chosen to 
have 1000 patents, including the four from small-scale test.  3.3 Data Pre-Processing 
Both LDA and LSA take a word by document matrix as an input. Each row represents 
a word from the entire dataset, and each column represents a patent. Each location in 
the matrix has a number that corresponds to the number of times the word designated 
by the row appeared in the document designated by the column. Before this word by 
document matrix was created, however, some pre-processing was done on the data. 

First, a program was created to read the patents and retain only words from the 
abstract, description, and claims sections. These sections are the most representative 
of the mechanical nature of a patent. In addition, symbols and numbers were removed 
from the dataset. Next, the entire dataset was run through a spellchecker to remove 
any misspelled words. Then, words contained in a list of “stop words” were removed, 
which are words deemed to have no value in describing the mechanical qualities of a 
patent. For even further reduction, any words common to 90% or more of the patents 
were removed, further reducing words that do not distinguish one patent from 
another. The 90% cutoff was chosen through experimentation. When lower than 
~80%, words that are important mechanical descriptors were excluded. The cutoff was 
set to 90% to include a margin of error. 
3.4 Latent Semantic Analysis (LSA) 
LSA gives a direct output of document similarities in the form of a cosine similarity 
matrix. Values range from -1 to 1, where -1 represents two documents that are 
complete opposites, and 1 represents two of the same document. This output is 
sufficient to create a matrix whose columns each represent a document and whose 
rows contain documents in their order of similarity to the document associated with 
the column they are in. This matrix is the desired output for this study, and no further 
processing is needed once it is obtained. 
3.5 Latent Dirichlet Allocation (LDA) 
Unlike LSA, LDA does not directly output document similarities. Instead, LDA 
outputs a matrix, z, whose rows represent all the words in the dataset, and columns 
represent all the documents. Each value in the matrix represents a topic that the word 
represented by the row and column is assigned to by the LDA algorithm. The user 
specifies the total number of topics that the words are sorted into, and each value in 
the matrix ranges between 0 and the user-defined number of topics.  

LDA was run with different numbers of topics until a good topic range was found 
for the dataset. This range is determined by looking at the word-topic assignments 
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output for each number of topics. If individual topics are judged, subjectively, to 
contain groups of words that should belong to more than one topic, then the algorithm 
is run again with more topics. If there are many empty or sparsely populated topics, 
the algorithm is run with fewer topics. For the small-scale test, experiments were run 
with k = 2, 4, and 6 to see what number of topics is appropriate for the comparison. 
For the large-scale test (1000 patents), 150 topics provided the best sorting. 

In order to compare documents, it is necessary to represent a document’s subject 
matter by the topics found within that document. For this study, this was done using 
the “document vector” method. In this method, each document is represented as a 
vector whose length is equal to the total number of topics. Each component of the 
vector represents a topic, so the first component represents topic 1, the second, topic 2, 
and so on. Each component of the document vector is then assigned a value that is 
equal to the number of words in the document that were assigned to that topic. So, if a 
document had 20 words assigned to topic 3, the third component of the vector would 
have a value of 20. Next, the vector is normalized by dividing it by the total number of 
words in the document it represents. In order to compare two documents, one subtracts 
their document vectors, then takes the magnitude of the resulting vector, the L2 norm. 
The lower the magnitude of this resulting vector, the more similar the documents are.  

The magnitudes of the differences of these document vectors can be considered 
similarity scores, where a lower score corresponds to a higher similarity. Having these 
scores, it is possible to create a matrix which orders documents based on their 
similarity, the same way it was done for the LSA output. 
3.6 Data Post-Processing 
The final step is to compare the document similarity matrices output by LSA and 
LDA. If only minor differences can be found between them, it can be concluded that 
LSA and LDA are more or less equal in their ability to sort mechanical patents. 
However, if the two matrices differ significantly, the more effective algorithm is 
determined by looking at the top 50 documents in each column of the matrices, and 
counting the number of documents with the same core functions. The core functions 
of a mechanical patent must be subjectively determined.  
3.7 Color Coded Comparison for Large Scale Test 
In order to compare the document similarity matrices outputs from LSA and LDA 
algorithms, column with same reference documents from LSA and LDA output 
matrices were individually compared. Each column of the matrices was divided into 
groups of 100, starting from most similar to least similar. One group each from LSA 
and LDA that is in the same ranking group are directly compared by how many 
number of the same documents are in that group. The group gets assigned with a color 
according to the percentage of similarity and each document in that group shows the 
same color in the document similarity color matrix. Each color with range of 
percentage match is shown in Fig. 4. Since the most number of matches in one group 
was under 35, each color has 3 percent range except for the last dark green color. 

4 Results 
4.1 Small Scale Test Case 
For the small-scale test case, LSA and LDA algorithms were performed on full patent 
text, functional (verb-based) patent text, and surface (noun-based) patent text to 

45



compare the results from LSA to LDA vice versa. Patents chosen for this test case 
were two pairs of functionally similar technologies, as show in Fig. 2, with Docs 1 and 
2 relating to archery, and Docs 3 and 4 relating to power generation. By performing 
this very small-scale test case, we hoped to be able to dissect why LSA and LDA 
might behave differently in their categorization of patents. LDA algorithm was 
performed with three different number of topics, 2, 4, and 6. The result from LDA 
with 4 topics was most similar to the result of a LSA. There was no particular pattern 
or similarity between the results from LSA and LDA with topic number of 2 and 6, 
which indicates that the number of topics is a crucial parameter to the categorizations. 

The results from the small-scale test case are shown in Fig. 3A, 3B, and 3C.  The 
first row of each table is named “reference document” in this paper, as all the 
subsequent documents are ordered below it depending on their similarity to that 
reference document. Full patent text comparison between two algorithms shows the 
best match with a minor discrepancy in the last two rows of the second column as 
shown in Fig. 3A. The order of Docs 3 and 4 is switched in the two methods, which, 
given that they are both power generation technologies, is not alarming. The 
functional patent text comparison in Fig. 3B shows the next best match. Although 
there is a discrepancy in every column of the matrix, it is interesting to note that the 
most similar document in each column is the least similar document in different 
methods, while the two other documents are in the same order. In the first column of 
the table, Doc 2 in LSA is the most similar text to Doc 1 while it is the least similar 
text in LDA’s result (as shown by the red outlines in Fig. 3B). The same pattern 
applies to all columns. The surface patent text comparison in Fig. 3C shows no 
similarity or pattern between the results of the two methods. Although the LSA result 
in Fig. 3C is identical to the result of the full patent text LSA results in Fig. 3A, there 
are too many dissimilarities to compare to the LDA results in Fig. 3C. 

Doc # Patent # Patent Title 
1 3942506 Demountable archery bow  
2 3957027 Take-down and folding bow  
3 7174710 Nelson flywheel power plant improvement  
4 7363760 Thermodynamic free walking beam engine  

Fig 2. Patents Included in Small Scale Test Case 
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Fig. 3 Small Scale Test Case with Four Patents A) Using full text of patents, B) Using Only 
Functional Content of Patents (Verbs), C) Using Only Surface Content of Patents (Nouns) 
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4.2 Large Scale Test Case
In large-scale test case, 1000 random mechanical patent documents, including the 4 
patent documents used earlier in small-scale test case, were selected to perform LSA 
and LDA algorithms. In the large-scale test, the LDA algorithm was performed with 
150 topics. The results are shown in Fig. 4A, B and C. For all three types of text 
comparisons, the results show more green color that is above 30 percent match, in the 
first group of 100 as compared to the rest. The first group in each column is the group 
of top 100 ranked documents that each algorithm ranked to be more similar to the 
reference document than the rest. Also, for all cases, more similarity appeared in the 
first and the last groups, and less similarity appeared in the middle region.   

For in-depth analysis, the results for the large-scale test were analyzed to 
determine whether they are consistent with those of the small-scale test. The reference 
document of the fifth column is Doc 1 from the small-scale test. The LSA results 
of the small and large-scale test agreed in terms of the order of the four selected 
documents. However, the LSA result in the large-scale test was not so effective 
in sorting the patents by the functional similarity. Doc 2, which is thought to be 
the most similar document to the reference document, was 231st similar document 
for large-scale test.  

Instead, the LDA result for the functional patent text was better at sorting the 
functionally related documents in the first group. Same as the first column of LSA 
result, the reference document is Doc 1, which describes the functional component of a 
bow. The fifth column also includes two more bow related documents in the first 
group 100, specifically in ranked 20th and 23rd. However, this was only true for this 
column and no similar pattern was observed in the other three examples.  

Fig. 4 Large-Scale Test Case with 1,000 Patents A) Using full text of patents, B) Using Only 
Functional Content of Patents (Verbs), C) Using Only Surface Content of Patents (Nouns) 
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5 Discussion 
5.1 Comparison of LSA and LDA for Small Scale Test Results 
LDA requires a defined number of topics as an input parameter. For the small-scale 
test, Fig. 3A and 3B indicate that LSA and LDA with 4 topics gives similar results for 
the full patent text and functional patent text respectively. The consistency in both 
cases suggests that using 4 topics is more appropriate than 2 or 6 topics as the input 
parameter when LDA is performed with 4 patent documents. It is still unknown 
whether LDA is effective in categorizing patent documents and how an appropriate 
number of topics can be determined. Therefore, the empirical finding in the small-
scale test could be important in deciding whether LDA is appropriate for 
analyzing patents. Given that Fu et al. succeeded in applying LSA as effective 
method for categorizing patents at a small scale, the underlying hypothesis is that it 
could be more effective than LDA at large scale.  

The functional text comparison in the small-scale test shows an interesting pattern 
in the order of the doc-doc similarity matrix. Although all columns in the matrix 
shown in Fig. 3B show discrepancies, the results resemble each other if the order 
of the most similar document and least similar document in a column are switched. 
The fact that the same rule applies to every column in Fig. 3B shows that there are 
similar documents in the middle region of the comparison matrix, while completely 
different documents in the regions farther away from the middle. When the 
documents are analyzed by function, LSA is more accurate than LDA in sorting 
them. For instance, Doc 2 should have matched functionally with Document 1 as 
they both describe the component of a bow. However, this is only true for results for 
LSA. Further research on small- and large-scale tests is required draw conclusions 
about these algorithms. Unlike the comparison of the functional text in the small-
scale test, the surface text does not show any similarity in between the results of the 
two methods.  5.2 Comparison of LSA and LDA for Large Scale Test Results 
For all cases, the similar documents are more apparent in the top and bottom groups of 
100 patent documents. The fact that both methods agree on the most and least similar 
documents can help designers to look at the two groups for near-field or far-field 
analogies. Depending on the goal of the designer, they could analyze similar 
documents or dissimilar documents during design ideation. However, the conclusion 
that the groups are internally similar among the patents contained within them is 
tenuous, as the best percentage match is approximately 30% and the rest are mostly 
below 10%. This may be due to the lack of well-established methods to choose the 
number of LDA topics, or to the diverse nature of language and particularly of 
articulation of technologies within patents. Especially for the large-scale test, it is 
unrealistic to test different numbers of topics until the best result is achieved.   
5.3 Future Directions 
Future work includes examining the data more closely to understand why and how 
patents are categorized, and how that changes with scale. A method to determine the 
best number of topics for the LDA algorithm is much needed.  Ultimately, the goal is 
to make a recommendation regarding the underlying method that should be used to 
analyze and categorize patents based on their textual content, but further work must be 
done prior to that recommendation. 
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 By mining the textual content of the patent database at an increasing scale, we can 
start to access the wealth of knowledge contained in the historical records of invention 
and technology.  The computational techniques compared in this paper provide a way 
to quantitatively evaluate similarity (and thus distance) between source analogies. In 
the future, when deployed at a large scale with interactive data visualization, these 
techniques will open up computationally supported analogy to a much larger audience. 
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