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Abstract
Tables in technical papers often provide much use-
ful information that is not present in text. This pa-
per focuses on the specific problem of automated
table reading (ATR): automating the interpreta-
tion and extraction of information from protein-
reaction information (PRI) tables in the molecular
biology literature (MBL), in the context of a gen-
eral knowledge-based approach to automating table
reading.We report on the results of our system eval-
uation, which demonstrated a precision of greater
than .9 in identifying relevant tables and .8 in map-
ping tables to correct relational schema.

1 Introduction
The work reported in this paper was motivated by and per-
formed for the DARPA Big Mechanism research project,
which aims to build a large model of human cancer signal-
ing pathways that could potentially be used for hypothesiz-
ing novel causal relationships that might inform cancer treat-
ments. An initial step in constructing the model is collect-
ing all human molecular pathway fragments that have been
published in the literature; these fragments would then be as-
sembled into larger pathways relative to such considerations
as the context of the experiment in which the pathway frag-
ments were observed, and the strength of the evidence.

The largest existing human cancer signaling pathway
database, Pathway Commons [Cerami et al., 2011], con-
tains information about tens of thousands of manually curated
pathway fragments (PFs) and associated protein reactions
(PRs) that are imported from databases like Reactome [Croft
et al., 2014]. Pathway Commons is estimated to contain only
1% of the human PFs and protein reaction information (PRI)
that exist in the molecular biological literature (MBL). Given
the ever-increasing number of papers published containing in-
formation about PFs and PRs (more than 10K per year), it is
likely that the gap between pathway databases like PC and the
body of information published in MBL will continue to grow,
unless reading these pathways and PRI is to some extent au-
tomated.

Although much PRI can be retrieved from the text of MBL
papers [Valenzuela-Escarcega et al., 2015], tables are a par-
ticularly valuable source of PRI. While PRI tables are not

common, when they exist they can contain many times the
amount of information as text — sometimes thousands or
tens of thousands of PFs — most of which is not found in
text. Thus, not reading tables would result in missing large
amounts of PRI. Moreover, tables often give richer informa-
tion than is present in text, e.g., details about the site of a
reaction and measurements of increase or decrease of phos-
phates in the substrate.

This paper describes a general approach for automating
the extraction of information for tables based on automating
the mapping of set of columns of a pre-determined relational
schema to sets of columns in a table, and our implementation
of this method for automating the extraction of PRI from ta-
bles. Although reading tables avoids many of the difficulties
of natural language processing (NLP), there are many other
difficulties to be solved, most saliently that
(1) There is no standard schema for representing PRI in ta-
bles. Indeed, we have discovered hundreds of schemas in
MBL tables. This means that (2) It is difficult to deter-
mine whether an MBL table is a PRI table. (3) There is
no standard representation used for specific types of infor-
mation, e.g., types of phosphorylation and site information.
(4) Much of the information in PRI tables, including the par-
ticipants of a reaction (the relevant entities of a pathway frag-
ment), is not explicit in text, but must be derived from other
sources, including surrounding context. Some of these is-
sues have been noted, though not solved, by previous research
to automate table reading [Pimplikar and Sarawagi, 2012;
Cafarella et al., 2008; 2009]; some arise from the specific
domain studied, though as we point out in the conclusion,
analogous problems exist for tables in other highly technical
or specific domains.

1.1 Scope
Much research on automated table reading (ATR) [Hurst,
2000; Wang and Hu, 2002] has focused on the problem of
table detection and on labeling rows and columns, since per-
forming these tasks is generally a prerequisite to automated
table reading. This is not the focus of this paper. All tables
in this study were found in papers retrieved from the PubMed
PMC website at http://www.ncbi.nlm.nih.gov/pmc/, and we
were therefore able to take advantage of the format in which
articles and tables are represented on that site. For articles
in that website, we have developed methods for reading both



tables included in the body of an article (in either HTML or
NXML) and tables included in supplementary material (these
are generally in Excel format). Although there are interesting
technical issues which we needed to solve to do this work –
e.g., determining row and column content in tables in which
there are subheaders spanning multiple columns; and deter-
mining table extent, particularly for Excel tables in which
cells adjacent to tables are used to represent other sorts of
information – these are not within this paper’s scope. A sep-
arate document describes these results.

2 Motivating Examples, Technical Challenges
We define the general automated table reading problem as
follows: Given a target relational schema R(x1 . . . xn) and a
table with columns T (c1 . . . cm), can we determine a a map-
ping between subsets of x1 . . . xn and subsets of c1 . . . cm,
and extract information corresponding to the mapped sub-
sets? Note first, that we are looking to map subsets onto
subsets rather than individual columns because a table can
spread out information over several columns or compress sev-
eral columns into one; and second, that this definition can be
generalized to multiple relational schema: most tables will
map to at most one relational schema, but some tables can
map to several schemas.

For the particular problem of reading PRI tables, this prob-
lem can be stated in the following domain-specific way: From
a given table, can we extract relation instances of the form
R(A,B,I,M,S,Q,N) where A and B are Participants A (a pro-
tein or chemical) and B (a protein, the substrate) in some
interaction; I is the reaction or interaction type itself (e.g.,
increases or decreases activity); M is the type of modification
(e.g., phosphorylation or acetylation); S is the site at which
the reaction takes place; Q is quantified information, e.g., the
increase in molecules in the substrate, most often represented
as a multiplier (fold change) or ratio, or the log of the ra-
tio; and N tells whether or not the information is negative.
Other teams on the project, whose systems read text rather
than tables, looked for all these fields except for Q, which is
generally not present in text. Q gives important information
on the magnitude of the modification induced by a reaction;
this can often be used to tell if the modification is considered
to be significant. E.g., if the ratio is between .6 and 1.6, the
reaction is considered by many researchers to have little ef-
fect. One can interpret the corresponding line of the table as
containing negative information about the interaction; that is,
it has not been shown to have a significant outcome.

It is rare that all information for all fields is present within a
single table, though often much information can be inferred.

The technical challenges we faced are best understood by
examining several sample tables. Consider Figure 1, which
shows a fragment from one of the simplest of the PRI ta-
bles in the MBL. There are four columns shown in this frag-
ment. 1 The first two columns are synonyms – the first gives a

1In the full table, there are six columns. The fifth column con-
tains information similar to the fourth column but for a different cell
line. The sixth column gives information about whether a substrate
is an src-inhibitor. Both provide useful data, but such information is
out of scope for this paper.

Figure 1: Table 1 fragment from PMCID 2962495

name for a protein, while the second gives the corresponding
Uniprot identifier – for Participant B. (If these columns were
not synonymous, it would be reasonable to hypothesize, sub-
ject to some checks, that the two columns represented Partic-
ipants A and B. The third column gives site information (S),
and the fourth column gives quantified information (Q).

This example demonstrates one of the difficulties of auto-
mated table reading: many desired pieces of information are
not explicit in tables, but must be inferred and/or extracted
from other sources. In this example, Participant A can be read
from the table title, which gives CSF-1R as the protein acting
on the substrate shown in columns 1 and 2. The table title
also gives M, the type of modification, in this case (tyrosine)
phosphorylation. This information can also be read from the
values in the third column: a subset of the letters (S,T,Y) (cor-
responding to three common types of residue in phosphory-
lation), or the letter P, in a column that gives site information,
are two common ways of indicating that the modification is
phosphorylation. N can be deduced from the values in the Q
column: in this case, the fold value is always high; thus all
lines in the table give positive information. One can also in-
fer the reaction type I, in this case increases activity, from the
fold change.

An added complexity is that often information about Par-
ticipant A is bundled with Q. For example, in Figure 2, the
rightmost four columns give quantified information: the sub-
header expresses the fact that these columns gives the log of
the ratio of the change of molecules in the substrate, com-
paring dDAVP (desmopressin) to a control. That is, dDAVP
is Participant A. (dDAVP’s role as Participant A can also be
read from the table title, not shown; but this is not gener-
ally the case when it also coupled with Q information.) Note
also that the single column type / argument Q is given over
four columns, as a time-series. Of special interest are cases
(e.g., 2nd line) where dDAVP initially inhibits the reaction,
although after a few minutes, it activates the reaction. Should
this be considered an activation or an inhibition? Our ap-
proach is to check for the greatest absolute value of change
and to assign the reaction type based on that value, but it is
clear that extracting the desired information from the table is
not trivial.

Figure 3 shows a table with positive information, negative
information, and for some lines of the table, a lack of infor-
mation. Note also that in this table, a single column contains



Figure 2: Table 1 fragment from PMCID 3277771

both site and kinase information (these must be teased apart in
order to populate relation instances) and columns containing
free text may appear in the table.

Figure 4 shows a typical Excel table; such tables are often
found in a paper’s supplementary materials. While Excel ta-
bles often have titles or other information in an area of the
spreadsheet outside the bounds of the table, or on the tab of
the spreadsheet, this file has neither. The link in the main
paper pointing to this spreadsheet contains some hints about
the table’s contents. However, it is extremely difficult even
for a human to understand this table without reading much
of the paper. E.g., how could a human find any evidence of
Participant A? Note also that there appear to be multiple ex-
periments, or at least multiple modes of measurement that are
reported in this table.

3 Technical Approach, Architecture
In general, automating the extraction of information from ta-
bles relative to a particular schema requires succeeding at two
tasks: 1) Automating the identification of relevant tables and
2) Automating the correct extraction of information from ta-
bles marked as relevant.

Our research and experimentation has shown that only a
small fraction of tables collected from the PMC site are PRI
tables. We estimate that 2-3% of papers filtered against a
set of search terms corresponding to protein reactions contain
PRI tables, and that 1% of papers on the PMC site are PRI
tables. For example, clinical tables or tables reporting on cell
functionality would be unlikely to have PRI even if the papers
themselves make some mention of protein reactions. Such
rareness does not negate the usefulness of automating PRI
table reading: when PRI tables are found, they often have
hundreds or even tens of thousands of lines of data that are
not present in text.

However, it did suggest that statistical classification ap-
proaches, as used by [Pimplikar and Sarawagi, 2012] in
querying tables, were unlikely to be useful as an initial strat-
egy: it would be too difficult to find (even using the help
of Elasticsearch) and label even the relatively small training
sets required by simple Support Vector Machines. Instead,
we opted to develop a rule-based approach. In any case, we
opted to use an approach consistent with that of University
of Arizona [Valenzuela-Escarcega et al., 2015], another per-
former in Big Mechanism. They have used a rule-based sys-
tem which has excelled in precision and throughput in ex-
tracting PRI from MBL texts.

We note that if successful, a rule-based system could be
used to automate the finding and labeling of training data;
that is, it would enable distant-supervision of learning.

The system’s architecture is shown in Figure 5.

3.1 Determining relevance
To be relevant, a table does not have to contain all information
needed for a complete relation instance of R(A,B,I,M,S,Q,N).
For PRI, a table should at least contain the following: (i) ev-
idence of two non-synonymous proteins, (ii) evidence of a
protein reaction (such as a post-translational modification),
and (iii) some quantified information concerning the reaction.
As discussed, these pieces of information can often be com-
bined to obtain further elements of the relation instance, but
even if that cannot be done, the combination of such evidence
makes the likelihood that a table is PRI-relevant quite high.

Given this smaller set of required information, the diffi-
culty reduces to finding and recognizing (i), (ii), and (iii). We
need to look for evidence in (a)columns, (b) column headers,
and (c) table titles/captions, as well as (d) possibly text out-
side the table as well. Together, (a) and (b) constitute column
identification.

3.2 Column identification
Rules for identifying columns are based on domain knowl-
edge. For PRI tables, they include the following:

Proteins
Columns of proteins, which almost always consist of in-
stances of Participant B, are generally easy to identify. Typi-
cally protein columns are labeled with the name of the protein
database whose nomenclature is being used; even without the
column label, regular expressions can be used to identify en-
tries as proteins. The task can be complicated by cell en-
tries that consist of multiple proteins, or proteins along with
other entities. Sometimes proteins are given as peptide subse-
quences; this often allows combining information about mod-
ification type, site, and Participant B.

Modification type
This information is often explicitly in column headers or ta-
ble titles. Related terms may be used: e.g., “kinase” indicates
that the modification is phosphorylation. The most common
residues on which phosphorylation occurs, serine, tyrosine,
and threonine, are represented by several common sets of ab-
breviations; their appearance in a column indicates phospho-
rylation. Marking the site at which a modification occurs by
a differently-cased letter indicating the modification (e.g., m
for methylation, p for phosphorylation) also gives useful in-
formation.

Site Information
Site information is often combined with information indicat-
ing modification, as in the NCBI site column in Figure 1 or
the Phosphosite column in Figure 2. As the Site (putative
kinase) column in Figure 3 shows, site information is often
mixed with other specific information in a single table cell.
In addition, multiple sites are often furnished within a single
cell.



Figure 3: Table 1 fragment from PMCID 1459033

Figure 4: Table 3 fragment (Excel), PMCID 3229182

Figure 5: System Architecture

Quantified Information

Quantified information is displayed as columns of real num-
bers or real-numbered intervals. It is often difficult to tell
from inspection of the column content that these real num-
bers describe increases or decreases in molecular activity in
substrates relative to a control. This information must al-
most always be obtained from the column header itself. What
makes obtaining this information difficult is that there ap-
pear to be scores of ways of labeling the header of this sort
of column. Some examples include KO/WT (knock-out /
wild-type), indicating that one is testing how knocking out
a gene affects a modification relative to the wild-type con-
trol, KD/WT (knockdown/wild type), H/V (hormone / vehi-
cle), ratio, fold-value, multiplier, and many column headers
beginning with “log.” Recognizing all instances of such col-

umn headers could still be improved. In more recent work,
we have been exploring the use of clustering to help identify
related column headers.

3.3 Discovering Participant A
It is almost never the case that Participant A is included in its
own column in a table. This is mostly because of the nature
of experiments in this domain: one catalyst is tested on mul-
tiple substrates. We use several strategies to find Participant
A: 1. Look for mention of a suitable entity in the table title
or caption. Assuming, however, that any protein or chemical
mentioned in the title must be Participant A leads to lowered
precision. 2. Look for mention of a suitable entity after a
“log” term in a column header. This strategy is also error
prone. What follows the “log” is often a short phrase that
describes in some way the nature of the experiment; men-
tion of Participant A is not the only possibility. 3. Scan the
paper title, introductory paragraph of the paper, and/or first
paragraph of the methods and material section for mention
of suitable entities. This strategy is also error prone, since
there will typically be multiple proteins mentioned in such
paragraphs.

These strategies are best understood as ways of generat-
ing hypotheses about Participant A; corroborating evidence
is supplied if other strategies also lead to the same Participant
A. Once a Participant A is hypothesized, the system further
checks its hypothesis by iterating on the contents of the col-
umn that has been identified as containing instances of Par-
ticipant B. It checks the text of the paper for sentences of the
form A [modifies] B or B is [modified] by A. Any such in-
stances further raise the confidence metric that Participant A



has been hypothesized correctly.

3.4 Other Information and Inference
Often the nature of a reaction – e.g., whether it increases or in-
hibits activity – is mentioned directly in a table title. Such in-
formation can also be inferred from Q, e.g., by noting whether
a ratio is greater or less than 1.

Whether information is negative must also often be in-
ferred, especially when time-series information is given,

3.5 Extracting information
The end goal of our system is extracting information on pro-
tein reactions that can be used by knowledge bases like Path-
way Commons. To that end, when a table is determined to be
relevant, all information corresponding to fields in the target
schema is extracted into a BioPAX-consistent format [Rod-
chenkov et al., 2013]. Proteins are converted to their equiva-
lent in Uniprot whenever possible.

4 Evaluation
4.1 Training and Test Sets
We formed a training and test corpus of papers and tables by
entering the search term “phosphoproteomics” into the PMC
search engine at http://www.ncbi.nlm.nih.gov/pmc/ in May
2015. The term “phosphoproteomics” was chosen to increase
the likelihood that papers returned would include PRI tables.
Around 3-4% of papers returned contained at least one PRI
table. Thus, the task of finding PRI-relevant tables was still
very difficult; however, it made it somewhat easier for hu-
mans to create a gold standard with PRI-relevant tables.

Of the more than 2200 PMCIDs (corresponding to papers)
that were returned, we used papers with trailing digits 1-6 as
a training set. We reserved papers with trailing digits 8 and 9
for internal testing purposes, and reserved papers with trailing
digits 7 and 0 for the test whose results would be reported to
DARPA.(We consulted with PubMed and PMC to ascertain
that trailing digits of papers are assigned randomly, so that
no bias was introduced in thus creating our training and test
sets.) We did not touch any of the papers in the reserved set,
either processing them or manually inspecting them, until the
time of the test. (Automated preprocessing to scrape and find
tables can take several days, so this was done several days
before the test was run.)

We were also provided with a set of 1000 PMCIDs from
MITRE, the evaluation team for Big Mechanism, to be used
as a test set. As with our own test sets, we did not process or
inspect these until the time of the test.

The test aimed to answer two questions:
Question 1: How well could the system find relevant tables,
that is, tables with protein reaction information? Specifically,
could it be shown that the system performed statistically sig-
nificantly better than random?
Question 2: How accurately could the system extract infor-
mation? That is, given a table, would the system extract in-
formation correctly?

For Question 1, we aimed to compute precision, recall, and
an F1 score. For Question 2, we focused on precision.

4.2 Evaluation of Question 1
Human Gold Standard Development
Two team members with knowledge of molecular biology and
who had not been involved in development of the table read-
ing system created a Human Gold Standard for Question 1.
First, they were shown examples of relevant and irrelevant
papers from the training corpus. Then, they were given the
test set of “phosphoproteomics” papers, trailing digits 7 and
0. There were 515 papers in this test set and 977 tables. Using
Elasticsearch, the Human Gold Standard developers searched
for terms that were similar to those in the examples of rele-
vant papers in the training corpus.

The two team members worked separately. Inter-annotator
agreement was high, near 90%. The few tables that they did
not agree on were discarded. The size of the Human Gold
Standard was limited by the number of relevant tables that
these team members could find (30). They had similar pat-
terns of being able to find some relevant tables quickly (the
equivalent of low-hanging fruit), and then slwoing down un-
til they got to the point that it was too frustrating to continue.
The Human Gold Standard thus consisted of 30 relevant ta-
bles and 30 irrelevant tables.

Results
For the Question 1 test, the system was input the 60 tables of
the Human Gold Standard and labeled each table as relevant
or irrelevant. It achieved precision of .93 and recall of .5, for
an F1 score of .65. This is statistically significantly better
than random.

The scores were consistent with (though a bit lower than)
earlier testing on the internal test set, trailing digits 8 and 9.
Precision was consistently excellent (usually perfect), while
recall hovered between .5 and .6.

Evaluation of Question 2
The system ran on the “phosphoproteomics” corpus, trailing
digits 7 and 0 (515 papers, 977 tables) and on the corpus sup-
plied by the government evaluation team (1000 documents,
646 tables). The system labeled 30 tables from the first test
set as relevant and extracted more than 12,000 protein reac-
tions. Note that the system labeled 30 tables as relevant, even
though of the 30 relevant tables in the Human Gold Standard,
it only labeled 15 as relevant. The reason for this is that the
system was able to find relevant tables that the humans were
not able to find. (We checked to make sure that the system had
indeed found relevant tables.) Given the small percentage of
relevant tables in any corpus, and the difficulty of searching
for such tables, even with Elasticsearch, this is not surprising.
In other words, even given virtually unlimited time, human
recall of (ability to find) relevant tables is no better than sys-
tem recall.

The system labeled 11 tables from the second test set as
relevant and extracted 585 protein reactions.

We examined the 11 tables labeled as relevant. 10 were la-
beled correctly, but one of the tables was irrelevant, giving a
precision score of just under .91. To score the precision of the
information extracted, we followed the rubric that the govern-
ment evaluation team was using for text-reading systems. An
entirely correct schema mapping received 1 full point. Half



a point was deducted for an error (e.g., getting Participant A
wrong or missing Participant A if it existed in the table (even
in a caption or column header), getting Participant B wrong,
or getting the modification type wrong.) Thus, any more than
one error resulted in a score of 0.

We examined each table to determine whether the system
had correctly mapped the subset of columns it selected onto
the desired relational schema. We randomly selected three
lines of each table for inspection. In all cases, the three rows
agreed with one another and appeared to fairly represent the
table. We scored .8 on precision of correct mapping to re-
lational schema. Most of our errors resulted from missing
Participant A when it was in a caption or column header, or
in getting Participant A wrong. Aside from Participant A, we
achieved a precision of .95.

4.3 Subsequent Progress and Evaluations
Following the evaluation, we revamped the system with mul-
tiple objectives:

1. Making the code more efficient, so that we could run
test-and-fix cycles more efficiently.

2. Fixing bugs
3. Improving recall by recognizing different types of post-

translational modifications, as well as recognizing unusual
choices on the part of table designers. For example, in the
same way that authors often stuffed two types of information
into one column (e.g., Participant A and quantified informa-
tion), they also separated into multiple columns information
that might be expected to stay together, such as phosphoryla-
tion site and phosphorylation residue.

After updating our system, we conducted an expanded
search and collected more than 3500 PMCIDs, yielding more
than 400 relevant tables from 91 PMCIDs. We extracted more
than 120,000 protein interactions from these tables. We then
selected 9 tables from new PMCIDs that we had not previ-
ously inspected or processed in prior evaluations, and eval-
uated precision. This time, we graded individual rows, and
inspected more rows per table to make sure that we were not
overlooking possible errors.

Our precision was 1.0 for Participant B, .89 for modifica-
tion type, .93 for site information, and 1.0 for negative infor-
mation. We continued to do poorly in recognizing Participant
A, however, and this remains an area of current researh.

5 Related Work
Much work on table reading has focused on detecting tables
or elements of tables, such as columns, rows, headers, and
stubs. [Fang et al., 2012; Hurst, 2000; Wang and Hu, 2002].
While such work is clearly important to the general problem
of table reading, it is not very relevant to our current work for
two reasons. First, for the large PMC corpus (containing mil-
lions of papers) on which we focus, we have solved the prob-
lem of finding and extracting the physical elements of tables.
Second, we are mainly concerned with the semantics of the
tables, and these papers do not focus much on semantics.

[Wong, 2008] studies the extraction of information from
biomedical tables. However, he limits himself to extracting
named entities. We extract entities but also focus on schema
mapping, relation recognition, and extraction.

The work of [Pimplikar and Sarawagi, 2012; Cafarella et
al., 2008; 2009] shows a direction that we would like to pur-
sue: using statistical classification techniques to understand
table relations. We are currently exploring several clustering
methods for this purpose.

The work of [Mulwad et al., 2014] is of particular interest.
The authors aim to do meta-analysis of medical tables on the
web. Central to their approach is a mapping of the categories
that are found (e.g., in table metadata) to well-known ontolo-
gies such as DBPedia and SNOMED. We plan to model fu-
ture research on this work, but note two ways ways in which
the authors’ work is different from ours. Most saliently, in
order to interpret PRI tables, the system is not primarily con-
cerned with medical ontologies such as SNOMED; rather, it
needs to process concepts of experimentation and measure-
ment, as well as detailed concepts in molecular biology. Mul-
wad et al.’s work seems most suited to meta-analysis of clini-
cal papers. Second, we focus on extraction, something that is
absent in Mulwad et al.’s work. Despite these differences, we
would be interested in exploring connections between these
approaches.

6 Current and Future Work; Generalization
to Other Domains

We are improving on and extending this work in several di-
rections. First, we are working on improving recognition of
Participant A by integrating this work with biomedical NLP
systems so that we can read more of the text that is relevant to
Participant A. Merging text and table-reading systems could
have other advantages, including allowing cross-checking be-
tween different systems on closely related data.

Second, we are running the automated table reading sys-
tem on larger corpora. In recent work, we have run the table
reading system on 13K papers, yielding several dozen tables
and 42K complete protein reactions. This not only shows that
our system is not just a toy system, but will afford us much
data to analyze so that we can improve performance. The ex-
tracted information has the potential to significantly increase
the size of the Pathway Commons KB.

Third, we are working on generalizing the system to work
on different domains:
(1) Tables containing other information about proteins, in-
cluding interactions between proteins and biological pro-
cesses and molecular functions; and expression of proteins
in tumor samples.
(2) Tables containing information about climate conditions
and crop yields, to populate crop-forecasting models.
(3) Tables containing information relevant to weapons devel-
opment, to be used by intelligence analysts. Much of the data
that analysts use is in tables. The amount of data is much
too large for analysts to read; tools that would allow them to
query and retrieve answers would help these analysts work
more efficiently.
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