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ABSTRACT
Model Driven Engineering and Domain Specific Languages
(DSLs) are being used in industry to increase productivity,
and enable novel techniques like virtual prototyping. Using
DSLs, engineers can model a systems in terms of their do-
main, rather than encoding it in general purpose concepts,
like those o↵ered by UML. However, DSLs evolve over time,
often in a non-backwards-compatible way with respect to
their models. When this happens, models need to be co-
evolved to remain usable. Because the number of models
in an industrial setting grows so large, manual co-evolution
is becoming unfeasible calling for an automated approach.
Many approaches for automated co-evolution of models with
respect to their DSLs exist in literature, each operating in a
highly specialized context. In this paper, we present a high-
level architecture that tries to capture the general process
needed for automated co-evolution of models in response to
DSL evolution, and assess which challenges are still open.

Keywords
Model driven engineering, evolution, domain specific lan-
guage, model, maintenance, co-evolution

1. INTRODUCTION
Model driven (system) engineering MD(S)E is being used

both in industry [1, 2], and open source [3] for developing
software and systems. Systems design using MDE allows for
analysis and feedback early in the design process. A main
driver for doing so is designing domain specific languages
(DSLs), e.g., using the Eclipse Modeling Framework (EMF)
[4]. In EMF, DSLs consist of meta-models [5] eventually
augmented by OCL constraints [6]. DSLs allow one to model
systems in terms of their domain, rather then using general
purpose concepts o↵ered by, e.g., UML or SysML [7].

We have observed that in an industrial setting, DSLs of-
ten occur in an ecosystem (cf. [8, 9, 10]), i.e., collection
of DSLs with dependencies between them introduced,e.g.,
by language reuse or model-to-model transformations. Ad-
ditionally, infrastructural artifacts such as parsers, textual
editors, and graphical editors also reside in this ecosystem.

Similarly to traditional software systems and languages [11],
DSLs evolve over time [12, 13]. This leads to challenges
with respect to backwards compatibility: artifacts (models,
parsers etc.) from the old version of the DSL may no longer
be valid in the new version of the DSL. To this extent, these
artifacts have to co-evolve to reflect the changes in the DSL.
This is known as the co-evolution problem.

Manual co-evolution of these artifacts is tedious, error-
prone, and costly. To mitigate this, we wish to automate the
co-evolution of artifacts in DSL ecosystems to the highest
extent possible. In the literature, various approaches have
been presented towards automating this co-evolution, each
with their own strong and weak points [14, 15, 16, 17]. For
our industrial case we aim at completeness and formality,
rather than approximation of the various artifacts.

In this paper, we present a high-level architecture that
captures the various steps and components required for co-
evolution of models. Subsequently, we examine the state-of-
the-art in co-evolution research to ascertain to what extent
the state-of-the-art is able to e↵ectuate the proposed archi-
tecture. Lastly, we summarize the open challenges towards
implementing the architecture, and are thus future work for
automating DSL/model co-evolution.

In the remainder of this paper we discuss DSL ecosys-
tems (Section 2),and present our architecture and its com-
ponents (Section 3), position existing work with respect to
the architecture and determine which components are not
yet supported (Section 4). Next we discuss the theoreti-
cal limitations of the automation (Section 5) and sketch the
directions for future work (Section 6).

2. ECOSYSTEMS
In model-driven engineering, the meta-model is the cen-

tral artifact that dictates the concepts and structure of other
artifacts. Several related DSLs and their corresponding arti-
facts constitute an MDSE ecosystem. When evolving a DSL
in an MDSE ecosystem, artifacts such as models [14, 15,
18, 19], model-to-model transformations [20, 21], text and
graphical editors [22] may have to be co-evolved. Di Ruscio,
Iovino and Pierantonio define three categories of co-evolving
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Figure 1: Evolution of the number of meta-model elements
in PGWB. Largest groups represent references (blue), enumer-
ation literals (indigo), attributes (yellow), classes (green).
Numerous changes to the meta-model are visible.
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Figure 2: Evolution of the number of meta-model ele-
ments in Basics. Largest groups represent references (blue),
enumeration literals (indigo), attributes (yellow), classes
(green). Numerous changes to the meta-model are visible,
in addition to a gradual increase in size.

artifacts [23]: DSL1/Model co-evolution, DSL/Transformation
co-evolution, and DSL/Editor co-evolution.

The driving cases behind our research are several MDSE
ecosystems at ASML, provider of lithography equipment for
the semiconductor industry. The largest ecosystem we con-
sider is CARM [2] consisting of 22 EMF-based DSLs, 95
QVT model transformations, and 5500 unit-test models sup-
porting development of these transformations [24].

In the CARM ecosystem, models make up the majority
of artifacts. Thus, in this work we focus on DSL/model co-
evolution. The model co-evolution e↵ort required by a DSL
evolution can be expected to become bigger when carried
out in the context of an MDSE ecosystem as opposed to a
single DSL and its models. The reasons are threefold: reuse
of concepts from other DSLs, model transformations and
implicit relations between DSLs.

Indeed, meta-models may reuse concepts from other meta-
models. However, let meta-model X reuse a concept A from
meta-model Y . If A in Y evolves, models of meta-model X
reusing A (from Y ) might need to co-evolve. Hence, evo-
lution of a single DSL, can cause co-evolution of models in
other DSLs.

Similar ripple e↵ects [25, 26] might be caused by model

1We consider a DSL to consist of a meta-model enriched
with OCL constraints. The original work of Di Ruscio,
Iovino and Pierantonio considered meta-models only.
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Figure 3: A binplot (aggregating several data-points into
hexagonal bins) of the number of revised PGWB models per
revision. Each hexagon represents a bin of a range of re-
visions and a range of “number of models modified”, where
the colors represent the number of data points in that bin.

transformations. Assume a transformation T transforms a
concept A in meta-model X to a concept B in Y . If A is
evolved to include additional information, one might have to
co-evolve T to incorporate this new information. Addition-
ally, Y might not be expressive enough to encode the new
information, and B itself has to be co-evolved too.

Lastly, not all relations between artifacts in MDSE ecosys-
tems are modeled (or specified) explicitly. There can also be
implicit relations, such as the classic software co-change as
described by Zimmerman et al. [27]. Similar relations exist
for MDSE and similar solutions can be presented [28].

To illustrate the ripple e↵ect issue in CARM consider
DSLs PGWB and Basics. PGWB reuses concepts from Basics.
Evolution of PGWB and Basics is shown in Figures 1 and
2, respectively. Around revision 4100 we see an increase in
the number of classes, enumeration literals and references
in Basics language. The corresponding change in PGWB is
barely visible. However, Figure 3 shows that there is a large
number of PGWB models that are being co-evolved around
revision 4100, in response to the evolution in Basics.

This example illustrates that presence of inter-DSL de-
pendencies in an MDSE ecosystem causes a ripple e↵ect and
increases costs of manual maintenance. Hence, an automatic
approach is required to facilitate co-evolution of artifacts in
MDSE ecosystems.

3. A HIGH-LEVEL ARCHITECTURE FOR
CO-EVOLVING MODELS

As described in Section 2, several types of artifacts must
co-evolve in response to DSL evolution. In this section we
present a high-level architecture for co-evolving models in
response to DSL evolution. However, a similar architecture
may be used for other artifacts. We focus on models (rather
than model transformations or editors) since models make
up the majority of CARM artifacts. Moreover, we focus on
co-evolving a single (arbitrary) model in response to the evo-
lution of a single DSL. In the case where there are multiple
DSLs, we can treat them as a single DSL by resolving all in-
clusions and dependencies. When more models are involved,
the proposed process can simply be repeated for each model
individually, as we have no assumptions on the model, other
than that it is a valid model for the first version of the DSL.

Figure 4 presents a high-level architecture for model co-
evolution. The process starts when a DSL (1) evolves (2) to
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Table 1: A summary of the components of the high-level
architecture that have to be implemented.

Comp. Description Fig. 4
C1 A way to model meta-model evolution 12
C2 A way to model OCL-constraint evo-

lution
12

C3 A way to obtain an evolution specifi-
cation

9,10

C4 A way to describe when a model is
valid for a given DSL

1,3,4,5,
7,8

C5 A way to describe model co-evolution 13,14
C6 A way to determine if a given co-

evolution specification is total
6

C7 A way to derive a co-evolution specifi-
cation from an evolution specification

10,11,
13

a new version (3). Consequently, models (4) conforming (5)
to that DSL (1) should co-evolve (6) into models (7) con-
forming (8) to the new version of the DSL (3). Since manual
co-evolution of models is too costly, we aim to (partially) au-
tomate the co-evolution by providing a specification (13) of
how models should co-evolve (6) in a dedicated formalism
(14). To ease the creation of a co-evolution specification
(13), we wish to use a DSL evolution specification (10) to
derive (11) a partial co-evolution specification (13).

We stress that one can neither expect the automation nor
the co-evolution specification to be complete. Theoretical
limitations of the approach are discussed in Section 5.

To support the architecture in Figure 4, one has to imple-
ment components listed in Table 1. First of all, a formalism
is required to model DSL evolution. This formalism can
be further decomposed into two components: C1, a way to
model meta-model evolution (12), and C2, a way to model
OCL-constraint evolution (12). Furthermore, once the for-
malism has been chosen a separate component C3 should
focus on obtaining an evolution specification (9,10), e.g., by
inspecting previous changes [29].

In order to co-evolve models in response to DSL evolution,
one needs C4, a mechanism deciding whether model (4,7) is
well-formed (5,8) for a given DSL (1,3), as well as C5 a way
to describe model co-evolution (13,14).

Once C4 and C5 are available, one needs to determine
whether all models would be correctly co-evolved by the
co-evolution specification, with respect to the evolution of
DSLs. As most DSLs only formally define syntax, and not
semantics, this is not a question that can be answered. Hence,
we merely require presence of a component, C6, capable
of determining whether every (syntactically) valid artifact
for DSL version 1 can be co-evolved with respect to a co-
evolution specification to a (syntactically) valid artifact for
DSL version 2. Finally, co-evolution specification depends
on the evolution specification, i.e., we need the component,
C7, presenting a way to do we derive (11) a co-evolution
specification (13) from an evolution specification (10).

4. EXISTING WORK
In the literature, several approaches exist that implement

(part) of the architecture presented in Figure 4. As men-
tioned above, although approaches exist for co-evolving trans-
formations [21, 29, 20] and editors [22], we focus on DSL/model
co-evolution, as models constitute the vast majority of ar-
tifacts in the ASML ecosystems. In the remainder of this
section, we discuss previous approaches to DSL/model co-
evolution and map them onto our architecture. In this way
we assess the state-of-the-art and identify directions for fur-
ther research. Our discussion of the previous work is in-
debted to earlier surveys [30, 13].

The approaches we survey (primarily) target EMF-based
DSLs. Additional ways to construct DSLs exist [31], with
the corresponding ways of dealing with co-evolution.

Specifying Evolution: (10,12).
To allow for the specification of meta-model evolution

(10), a formalism is required to capture the evolutionary
steps of a meta-model from its original to its evolved ver-
sion. To this extent we have computed a complete library of
atomic evolutionary steps based on the meta-meta-model [32].
Using this library, every sequence of evolutionary steps can
be described allowing the implementation of C1.

Alternatively, a generic model-to-model transformation
language such as QVT [33, 34], or a meta-model indepen-
dent di↵erence DSL such as EMFCompare [35] can be used.

However, to the best of our knowledge, for OCL (C2) a
dedicated formalism is still needed.

Obtaining an Evolution Specification: (9,10).
There are several ways of obtaining an evolution specifi-

cation, which can be divided into two categories: automatic
evolution specification approximation and manual evolution
specification specification.

Automatic evolution specification approximation is also
known as di↵erencing. Such approaches such as EMFMi-
grate [29] and EMFCompare [35] compare the original and
evolved meta-model to extract a specification of the dif-
ference. A known shortcoming of these approaches is the
inability to choose between several evolution specifications
that can lead from the original meta-model to the evolved
one. For instance, when renaming a class, an identical result
may be achieved by deleting the old class and creating a new
class. Rose et al. [30] argue that no di↵erencing approach
can always choose the correct evolution specification.

Manual Evolution Specification Specification can be achieved
by means of a predefined collection of operators, or by record-
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ing changes. Operator-based methods [14] specify evolu-
tion by means of operators, that each encode a (frequently-
occurring) pattern of co-evolution. The applicability of this
approach relies heavily on the available operators. The state-
of-the-art operator-based tool is Edapt2 [36], which we have
evaluated [37], and improved [38]. Change recording ap-
proaches record the actions performed on the meta-model
by the user in order to obtain an evolution specification.
This mitigates the problem presented by the di↵erencing ap-
proach, but only is the user works in the correct way. That
is, if a user deletes and adds a class, did they indeed intend
a delete and add, or did they really intend a rename?

Summarizing, various approaches can be found in the lit-
erature to implement C3.

DSL/Model Conformance: (5,8).
When a DSL evolves, we can wonder which models are

valid before the evolution, and which models are valid after
the evolution.

Schoenboeck et al. have formalized conformance into a
number of OCL constraints [39]. However, this work does
not cover all constraints used by modern meta-modeling
frameworks such as EMF [4]. González et al. have created
a transformation from EMF (including OCL constraints) to
a constraint solving language CSP [40]. This CSP speci-
fication then precisely describes all valid model instances.
Lastly, Anastasakis et al. have created a similar transfor-
mation that formalizes a UML diagram [41] into Alloy [42].

Summarizing, the existing formalisms allow one to de-
scribe the set of all valid models for a given meta-model,
implementing component C4.

Specify Co-Evolution: (13,14).
For the specification of co-evolution, several mature lan-

guages/tools exist, the most generic being QVT [33, 34].
Specifically for the co-evolution of models, a tool called Flock
[43] exists. We thus consider C5 to be adequately addressed
by these existing tools.

Valid Co-Evolution Specification: (4,6,7,13).
Intuitively, a co-evolution specification takes a model in

the original language as input and yields a semantically
equivalent model in the evolved language as output. How-
ever, DSLs defined by a meta-model and OCL constraints
merely define syntax of the models. Hence, addressing valid-
ity either calls for analysis of semantics specified elsewhere,
or for redefinition of validity in terms of syntax.

Unfortunately semantics are often not formally specified,
but embedded in code generators and interpreters. Hence,
we relax the notion of validity and require the co-evolution
specification to be total, i.e., every valid model for the orig-
inal DSL is mapped to a valid model in the evolved DSL.

Summarizing, we observe that to the best of our knowl-
edge, no implementation for C6 is available.

Deriving a Co-Evolution Specification: (10,11,13).
Many of the existing solutions for DSL/model co-evolution,

derive a co-evolution specification from the corresponding
evolution specification [36, 29].

Additionally, Kappel et al. [16] have defined a method
called “Model Transformation By-Example”. The method

2Previously known as COPE

Language Workbench Developer

DSL Developer

DSL User

M2

M3

M2 M2

M1 M1 M1 M1 M1 M1

Figure 5: The three levels of meta-modelling, and their avail-
able information.

starts with the user implementing a co-evolution for a cou-
ple of models. From these sample co-evolution specifica-
tions, they derive a generic co-evolution specification that
should be applicable to all models, dropping the need for an
evolution specification all together.

However, regardless of the technique chosen, derived co-
evolution specification should be total. Otherwise, a co-
evolution specification derived might turn out to be useless.
Since no implementation of C6 is available to the best of
our knowledge, we consider implementation of component
C7 to be an open question. Additionally, with respect to
this derivation, there are other limitations to consider, which
we will discuss in Section 5.

Conclusion.
Having summarized the state-of-the-art for DSL/model

co-evolution, we conclude that the following questions should
be answered, before the DSL/model co-evolution architec-
ture can be completely implemented:

1. C2: How do we specify OCL evolution?

2. C6: Is a given co-evolution specification total?

3. C7: How do we derive a total co-evolution specifica-
tion from an evolution specification?

5. THEORETICAL LIMITATIONS TO AU-
TOMATION

In the previous sections, we have defined a number of com-
ponents that have to be implemented in order to automate
the co-evolution of models with respect to DSL evolution.

Herrmannsdörfer et al. have already argued that, in gen-
eral, no co-evolution specification can fully automate model
co-evolution [44]. In the same work, the authors present a
solution based on user interaction. However, there are addi-
tional limitations not related to user interaction, but related
to the information available.

Deriving co-evolution specifications from evolution specifi-
cations is hindered by presence of OCL constraints in DSLs.
The OCL constraints are not known by the developer of
(co-)evolution tooling, as they reside at the level of actual
meta-models. We structure the information available to de-
veloper of co-evolution tooling by explain the three di↵erent
levels of information (illustrated in Figure 5).

At level 1 reside the Language Workbench Developers.
They have knowledge of a specific meta-meta-model (e.g.,
Ecore [45]), but have no knowledge of specific meta-models
(e.g., as the workbench they develop may be used outside
their own company). The challenge they face is that any
tools, or techniques developed must be generic and applica-
ble to any meta-model conforming to the meta-meta-model.

5



This means that a researcher wanting to create a complete
and reusable piece of evolution tooling must account for ev-
ery possible meta-model, and every combination of possible
OCL constraints on that meta-model. With respect to co-
evolutions for these evolutions, every valid instance of that
DSL (i.e., any possible meta-model with any valid combina-
tion of OCL constraints) should be accounted for. We deem
that creating reusable pieces of tooling at this level is, there-
fore, unfeasible. What remains is to assist the developers at
the next level in creating good co-evolution specifications.

At level 2 reside the DSL Developers. DSL developers
have knowledge of their own specific meta-model including
the OCL constraints present. Additionally the DSL devel-
oper has access to the evolution specification of that meta-
model and its OCL constraints. However, the DSL developer
may still have no knowledge of which instances (models) of
their DSL actually exist (e.g., because the models are made
at external companies), and must thus (in their work) ac-
count for all possible models. However, tooling exists to
give a formal definition of what a valid model is (e.g., us-
ing EMFtoCSP [40]). In this sense, we could help the DSL
developers gain insight into the models that could exist

At the lowest level, level 3, reside the DSL users. These
users actually create models. At this level there is knowledge
of all levels (models, meta-models and meta-meta-models)
and the evolution of meta-models. However, creating tooling
here is not feasible, as it would have to be re-created for
every individual version of every individual DSL.

As, at level 1 there is not enough information to create
static reusable pieces of (co-evolution) knowledge. One can
never give a fixed mapping from an evolution specification
to a co-evolution specification that works for every meta-
model, because for every such mapping there is a possible
OCL constraint that can contradict the mapping.

A solution would be to create a function that, given a DSL
(meta-model + OCL) and an evolution specification, yields
a co-evolution specification. Such a function would have to
account for every possible meta-model, and every possible
combination of OCL constraints on that meta-model. At
present, we do not see how to approach this problem.

We thus believe that creation of the evolution-to-co-evolution
mapping should be carried out at level 2 (DSL developer),
as the DSL developers do have knowledge of which OCL
constraints should be accounted for. The next obvious goal
should thus be to support the DSL developer in creating a
valid mapping (e.g., by creating counter examples of models
that are not validly co-evolved for a given mapping).

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a high-level architecture

for implementing a tool that automates model co-evolution
with respect to DSL evolution to the highest degree possible.
Based on this architecture, we have presented a number of
questions that have to be answered before the architecture
can be fully implemented.

Furthermore, we have looked at the state of the art in
DSL/model co-evolution to assess to what extent the posed
questions have already been answered. We concluded that
specification of both meta-model evolution, and model co-
evolution are supported by existing formalisms, but the spec-
ification of OCL evolution is not. Furthermore, we observe
that there is no formal check whether a given co-evolution
specification is valid, and that this question has to be an-

swered before co-evolution specifications can be derived from
evolution specifications.

As future work, we consider formal modeling of co-evolution
specifications and checking whether their validity. Addition-
ally, we are considering specification of OCL evolution as
future work.
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